Journal News

Lipoprotein(a): Silent killer or crystal ball?

Aswathy Rai
Dec. 27, 2022

Lipoproteins are made up of lipids and the proteins that transport lipids. Lipoproteins in the blood shuttle lipids such as cholesterol and triglycerides from the intestine to tissues throughout the body.

Lipoprotein (a), or Lp(a), consists of cholesterol and two proteins, Apo-B 100 and Apo(a). High levels of Lp(a) accelerate the buildup of cholesterol on artery walls, increasing a person’s risk for acute coronary syndrome, or ACS, a blanket term for several diseases associated with sudden reduced blood flow to the heart. In the U.S., ACS affects 15.5 million people and is a leading cause of death.

Elena Aikawa’s lab at Brigham and Women’s Hospital in Boston focuses on studying the drivers of ACS and finding diagnostic biomarkers to identify populations at risk for cardiovascular diseases. In a collaborative study with Pawel Szulc’s lab at the University of Lyon published in the Journal of Lipid Research, postdoc Francesca Bartoli–Leonard and a team of researchers assessed whether a relationship exists between high levels of Lp(a) and ACS in older men.

“With the American Heart Association estimating a person has a heart attack every 41 seconds, it’s imperative we as scientists investigate how to predict these events in patients before they happen,” Bartoli–Leonard said.

The Lp(a) levels in the blood are determined by variations in the LPAgene locus. Hence even individuals with healthy diet and exercise habits may be at high risk for ACS if they have genetic variants that produce high Lp(a) levels.

“Unfortunately, the guidelines from the American Heart Association only suggest clinicians measure lipoprotein(a) in individuals with hypercholesterolemia,” Bartoli–Leonard said, “meaning there are large parts of the American population who may be at risk for lipoprotein(a)-driven cardiovascular disease who are simply unaware.”

Doctors manage ACS with apheresis, a filtering process that removes Lp(a) particles from the blood. No drugs are approved for reducing Lp(a) levels; however, some therapies are currently in clinical trials.

“Clinical treatment for cardiovascular disease can be costly,” Bartoli–Leonard said. “We wanted to find a marker that could be assessed once, and for a relatively low cost, that may help stratify which patients will have a coronary event.”

To determine risk, the team tracked Lp(a) in 755 men over age 60 who live in the same community, following their coronary events and overall health for up to eight years. The researchers report that participants with blood Lp(a) levels higher than 50 milligrams per deciliter had an increased incidence of ACS.

For, this investigation, only Caucasian males living in France were recruited in the study population. “However, these results are consistent with reports that included more diverse ethnic backgrounds and those assigned female at birth," the authors wrote in the paper.

The study provides further evidence that Lp(a) levels predict the likelihood of a coronary event independent of common risk factors such as smoking, body mass index and cholesterol levels.

“We hope that our work, alongside with the other studies, which also look at Lp(a) in the general population, encourage the health care providers to assess Lp(a) routinely in the clinic,” Bartoli–Leonard said.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Aswathy Rai

Aswathy N. Rai is an assistant teaching professor and undergraduate coordinator at Mississippi State University's department of biochemistry, molecular biology, entomology and plant pathology. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Lipid biomarkers hold clues to stroke recovery
Journal News

Lipid biomarkers hold clues to stroke recovery

Feb. 18, 2025

Scientists at the University of Arizona found that a lipid mediator accumulates with the waves of inflammation associated with stroke and foamy macrophages.

From the JBC archives: Madness, indoles and mercury-based cathartics
Journal of Biological Chemistry

From the JBC archives: Madness, indoles and mercury-based cathartics

Feb. 11, 2025

A 1907 paper sought to resolve an ongoing question of whether indole, a bacterial molecule in the gut, could cause insanity if overproduced.

From the journals: JBC
Journal News

From the journals: JBC

Feb. 7, 2025

Linking modified cysteines to cell migration. Recognizing protein tags for degradation. Disrupting C. difficile toxin production. Read about recent JBC papers on these topics.

Becoming a scientific honey bee
Essay

Becoming a scientific honey bee

Feb. 5, 2025

At the World Science Forum, a speaker’s call for scientists to go out and “make honey” felt like the answer to a question Katy Brewer had been considering for a long time.

Mutant RNA exosome protein linked to neurodevelopmental defects
Journal News

Mutant RNA exosome protein linked to neurodevelopmental defects

Feb. 4, 2025

Researchers at Emory University find that a missense mutation impairs RNA exosome assembly and translation and causes neurological disease.

Study sheds light on treatment for rare genetic disorder
News

Study sheds light on treatment for rare genetic disorder

Feb. 2, 2025

Aaron Hoskins’ lab partnered with a drug company to understand how RNA-targeting drugs work on spinal muscular atrophy, a disorder resulting from errors in production of a protein related to muscle movement.