Journal News

Why cognition declines in Type 2 diabetes patients

Oluwadamilola “Dami” Oke
Dec. 19, 2023

For years, scientists have observed a correlation between the progression of Type 2 diabetes and the onset of cognitive impairment. A new theory about the cause of this, largely based on animal, cell and human genetics studies, implicates the cytochrome P450-soluble epoxide hydrolase, or CYP450-sEH, pathway in both Type 2 diabetes and cognitive decline.

CYP450s are enzymes that break down polyunsaturated fatty acids into epoxides, metabolites that are believed to have anti-inflammatory and cell-signaling properties. However, the sEH enzyme breaks down these epoxides into diols — molecules believed to be harmful to the cell.

The cytochrome P450 enzyme breaks down polyunsaturated fatty acids into epoxides and could have a therapeutic role in treating cognitive decline.
WIKIMEDIA COMMONS
The cytochrome P450 enzyme breaks down polyunsaturated fatty acids into epoxides and could have a therapeutic role in treating cognitive decline.

Once epoxides are broken into diols, they can interfere with other normal metabolic pathways and physiological functions. Both epoxides and diols belong to the group of lipid metabolites called oxylipins.

Researchers also have found that the implicated pathway is prevalent in patients with obesity, which made a team at the University of Toronto and Sunnybrook Research Institute curious about whether an association exists between the oxylipins derived from the CYP450-sEH pathway and the three conditions: Type 2 diabetes, cognitive impairment and obesity.

According to Natasha Anita, a Ph.D. candidate at Toronto and Sunnybrook and first author of the study, the researchers were motivated to investigate this association because they had previously found “that oxylipin levels in the blood differed between people with and without small vessel disease in the brain and that the diols were associated with poorer cognitive performance and neurodegeneration.”

Knowing that diabetes increases the risk for small vessel complications and cognitive impairment, the team hypothesized that oxylipins would also be implicated in cognitive function in Type 2 diabetes patients. A report of their work was published recently in the Journal of Lipid Research.

Excluding individuals with Type 1 diabetes and neurological diagnoses, among other criteria, the researchers recruited 108 individuals with Type 2 diabetes; 51 were obese and 57 were not obese.

Using neuropsychological and verbal tests, the team assessed cognitive function, verbal fluency and mental agility. They also assessed learning and short-term and long-term memory.

In their JLR paper, the researchers wrote that their results largely agreed with the results of earlier studies in people without Type 2 diabetes. They found that increased levels of diols were associated with poorer cognitive performance.

“This is the first study to look at oxylipins in relation to cognition in Type 2 diabetes,” Anita said. “Although diabetes is an established risk factor for Alzheimer’s disease and dementia, currently there is no specific treatment for cognitive problems in this population.”

The results from this study show the CYP450-sEH pathway to be a strong potential target for therapies.

“Our current work adds to the growing number of clinical studies examining the CYP450-sEH oxylipin pathway,” Anita said. “We are hopeful that this indicates a new pharmacological target to prevent cognitive decline in this population.”

Moving forward, Anita said the team is investigating “whether these oxylipins are associated with cognitive decline over time, and whether targeting this pathway will improve cognition in people with diabetes.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Oluwadamilola “Dami” Oke

Oluwadamilola “Dami” Oke is a Ph.D. candidate of biomedical engineering at the George Washington University with an interest in communication and outreach for science advancement. She is an ASBMB Today contributing writer.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mapping fentanyl’s cellular footprint
Journal News

Mapping fentanyl’s cellular footprint

Dec. 4, 2025

Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Profile

Designing life’s building blocks with AI

Dec. 2, 2025

Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Journal News

Mass spec method captures proteins in native membranes

Nov. 25, 2025

Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.