Our internal ecology
According to a recent estimate, if you sample enough humans’ intestines, almost 40,000 types of microbe can be found. Any individual may have 100 trillion individual micro-organisms in one or two thousand taxonomic groups. How does the microbiome maintain such diversity?
One model to explain the enormous variety borrows from studies of larger ecosystems. A well-known theory in ecology, nonequilibrium coexistence of competitors, suggests that as an environment fluctuates, different species gain an edge over neighbors — but their ascendance rarely lasts long.

Intestinal nutrients fluctuate as the human host eats and excretes, in time with the physiology of sleep–wake cycles, and along the length of the gut. A layer of mucus that protects host cells from commensal microbes introduces new oligosaccharides as a fuel source and also separates microbial communities into mucosal and luminal niches. As conditions change, species in the microbiome shift in abundance and jockey for survival, and the constantly changing competitive edge keeps the ecosystem diverse.
According to University of Ottawa postdoctoral fellow Leyuan Li, the time is ripe for microbiome studies to apply population modeling and systems dynamics from macroecology to this more intimate ecosystem.
“Most of the time we study the gut microbiome as a whole: We sequence one sample as if it were representative of our whole gut,” said Li. “The gut is actually a heterogeneous system … so we need to start thinking about the gut microbiome like a rainforest.”
Li, who conducted her Ph.D. studies building artificial ecosystems, now studies gut microbiome dynamics in health and diseases such as inflammatory bowel disease in the lab of Ottawa professor Daniel Figeys. In a recent review in the journal Molecular & Cellular Proteomics, the pair offer an introduction to microbiome ecology.
The review highlights the potential for metaproteomics, which characterizes the proteins of whole communities of microbes, to describe microbial function. Most microbiome studies use metagenomics, ribosomal RNA sequencing of the mixed population of a microbial community, to identify the bacteria, fungi and archaea that are present. Li thinks metaproteomics also may help researchers road-test increasingly popular ex vivo experimental models of the microbiome to make sure they match up to the real thing.
“Using metagenomics, you know who are there and what they can do,” Li said. “With metaproteomics you know who are there and what they are doing.”
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

From the journals: MCP
Protein analysis of dopaminergic neurons. Predicting immunotherapy responses in lung cancer. ZASP: An efficient proteomics sample prep method. Read about papers on these topics recently published in Molecular & Cellular Proteomics.

Unsheathing the role of myelin lipids in Alzheimer’s disease
Xianlin Han, an ASBMB Breakthroughs speaker, discussed his pioneering work on lipidomics and the role of sulfatide lipids in Alzheimer's disease.

Ten interesting quotes from the JBC archives
Older papers include archaic quirks and long-abandoned biological concepts. Some show flashes of ideas that grew into their own fields, and others show that some things never change.

Lipid biomarkers hold clues to stroke recovery
Scientists at the University of Arizona found that a lipid mediator accumulates with the waves of inflammation associated with stroke and foamy macrophages.

From the JBC archives: Madness, indoles and mercury-based cathartics
A 1907 paper sought to resolve an ongoing question of whether indole, a bacterial molecule in the gut, could cause insanity if overproduced.

From the journals: JBC
Linking modified cysteines to cell migration. Recognizing protein tags for degradation. Disrupting C. difficile toxin production. Read about recent JBC papers on these topics.