Journal News

Can a hair-loss drug prevent heart disease?

Arti Dumbrepatil
Sept. 17, 2024

Drug discovery is costly and filled with uncertainty. Drug repurposing reduces time and costs by identifying new applications of a drug already approved or under investigation by the U.S. Food and Drug Administration. The FDA approved finasteride, under the brand name Proscar, in 1992 to treat benign prostate enlargement in men and again, in 1997, under the brand name Propecia, to treat male pattern hair loss.

Researchers at the University of Illinois Urbana–Champaign, U of I, recently found another potential use for finasteride: preventing cardiovascular diseases, or CVD. In a study published in the Journal of Lipid Research, the team hypothesizes that finasteride will lower heart disease risk by cutting cholesterol levels.

The researchers studied the effects of finasteride on male mice and analyzed data from men who participated in the National Health and Nutrition Examination Survey, or NHANES, between 2009 and 2016.

Finasteride is a 5-alpha-reductase inhibitor that prevents the conversion of testosterone into dihydrotestosterone, or DHT, an active metabolite that plays a critical role in forming male sex organs, hair patterns and prostate growth.

Donald Molina, a graduate student at U of I and first author of the study, explained that low levels of testosterone in men are associated with higher CVD risk.

“As the drug acts on the levels of testosterone, we thought there might be an association between the drug and heart disease,” he said. “This was our starting point; we investigated how finasteride affected lipid profiles in humans.”

The team first analyzed the data deposited at NHANES and found that finasteride intake was associated with a reduction in total cholesterol and low-density cholesterol. 

“These results encouraged us to go for the animal studies,” Molina said.

The researchers used male mice genetically predisposed to atherosclerosis, a major underlying cause of heart disease. They fed the mice a high-fat, high-cholesterol diet for 12 weeks, and finasteride was administered in four increasing doses. They monitored cholesterol and other lipid levels and studied gene expression and lipid metabolome.

The mice on finasteride had lower cholesterol levels and showed delayed progression of atherosclerosis, reduced plasma triglycerides and less liver inflammation.

Jaume Amengual, an associate professor at U of I and lead author on the study, said the team thinks that, in the presence of finasteride, the liver degrades more lipids.

“The liver is burning more fat,” Amengual said. “We can also relate our findings to fatty liver disease. When you have a bad diet, you have a lot of fat accumulating in your liver, your liver will become inflamed and eventually develop into liver cirrhosis and even cancer. Therefore, we see in our experiment a decrease in the fat content in the liver and decreased liver inflammation. Not only did finasteride reduce levels of plasma cholesterol, it also improved how the liver was working in these mice.”

To bolster these findings, the researchers will need a detailed analysis of the effects of finasteride on a statistically relevant population and metabolic side effects such as levels of gut microbiota, as well as studies of its interactions with other drugs that target cholesterol synthesis or absorption.

 “One of the reasons why I became interested in this medication in the first place is because I have been taking this drug for hair loss since I was about 20,” Amengual said. “Even with limitations our study offers a stepping stone for repurposing finasteride for preventing cardiovascular diseases.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Arti Dumbrepatil

Arti Dumbrepatil is a freelance science writer and communicator. With her academic training plus expertise in science communication and writing, she demystifies and transforms complex, jargon-filled science into enjoyable and comprehensible content that resonates with a diverse audience. She is an ASBMB Today volunteer contributor.

Related articles

From the journals: JLR
Swarnali Roy
From the Journals: JLR
Sephra Rampersad
From the journals: JLR
Sephra Rampersad
From the journals: JLR
Poornima Sankar
From the journals: JLR
Swarnali Roy

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How opposing metabolic pathways regulate inflammation
Journal News

How opposing metabolic pathways regulate inflammation

Jan. 28, 2025

Researchers use cybernetics to understand what happens when two acids produced by macrophages compete for binding sites on the enzyme that converts them to active products.

We are all mosaics
News

We are all mosaics

Jan. 25, 2025

Your body is a collection of cells carrying thousands of genetic mistakes accrued over a lifetime — many harmless, some bad, and at least a few that may be good for you.

From the journals: MCP
Journal News

From the journals: MCP

Jan. 24, 2025

Finding biomarkers for preeclampsia. Early diagnostic biomarkers of pancreatic cancer. Better tools to identify tumor-specific peptides. Read about these recent MCP papers.

RNA binding proteins with benefits
Research Spotlight

RNA binding proteins with benefits

Jan. 22, 2025

Blanton Tolbert studies the biochemical mechanisms of RNA virus replication while working to make science more accessible, and more interesting, for all people.

A proteomic hunt for phosphosites in the aging brain
Journal News

A proteomic hunt for phosphosites in the aging brain

Jan. 21, 2025

In older mice, researchers found more enzymes that phosphorylate other proteins and changes in phosphorylation levels in proteins associated with neurodegeneration.

What if a virus could reverse antibiotic resistance?
News

What if a virus could reverse antibiotic resistance?

Jan. 19, 2025

In promising experiments, phage therapy forces bacteria into a no-win dilemma that lowers their defenses against drugs they’d evolved to withstand.