
Enzymes: Still cool after all these years
The first enzyme was discovered in 1833, almost 200 years ago and long before the nature of proteins was appreciated. The field of enzymology came into its own in the 20th century. Technological advances in the hands of creative enzymologists led to an ever-growing understanding of how enzymes achieve enormous rate accelerations as well as the structural basis for substrate specificity and allosteric regulation.
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30. See the categories.
Enzymologists continue to break new ground as we enter the 21st century. Our session at Discover BMB will feature new work on enzyme functions, mechanisms and applications.
Our first group of speakers will focus on enzymes that deal with problems caused by misbehaving metabolites. They will describe how enzymes can protect unstable intermediates and repair damaged metabolites. Our second group will explore the potential of using enzymes for biodegradation and green biosynthesis of chemicals currently produced from petrochemicals. Our final group will focus on enzymes that catalyze novel reactions, pushing the boundaries of chemistry accessible through biocatalysts.
Keywords: Substrate channeling, metabolite repair, biodegradation, green chemistry, natural product biosynthesis, radical chemistry.
Who should attend: Anyone who appreciates the awesome power of enzyme catalysis.
Theme song: “Still Crazy After All These Years” by Paul Simon, because enzymes are crazy-efficient catalysts
This session is powered by the ribosome, which produces the enzymes that make life possible.
Cool and novel enzymes
Enzymatic control of problematic intermediates
Chair: Hung-Wen (Ben) Liu

Shelley D. Copley, University of Colorado Boulder
Tom Niehaus, University of Minnesota, Twin Cities
Shelley Minteer, University of Utah
Carole Linster, University of Luxembourg
Enzymes for a sustainable future
Chair: Shelley D. Copley
Gregg Beckham, National Renewable Energy Laboratory
Larry Wackett, University of Minnesota
Michelle Chang, University of California, Berkeley
Raquel Lieberman, Georgia Institute of Technology
New and unusual enzymatic transformations
Chair: Michelle Chang
Hung-wen (Ben) Liu, University of Texas at Austin
Aimin Liu, University of Texas at San Antonio
Sara O'Connor, Max Planck Institute for Chemical Ecology
Wenjun Zhang, University of California, Berkeley
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

CRISPR epigenome editor offers potential neurodevelopmental gene therapies
Scientists from the University of California, Berkeley, created a system to modify the methylation patterns in neurons. They presented their findings at ASBMB 2025.

Finding a symphony among complex molecules
MOSAIC scholar Stanna Dorn uses total synthesis to recreate rare bacterial natural products with potential therapeutic applications.

E-cigarettes drive irreversible lung damage via free radicals
E-cigarettes are often thought to be safer because they lack many of the carcinogens found in tobacco cigarettes. However, scientists recently found that exposure to e-cigarette vapor can cause severe, irreversible lung damage.

Using DNA barcodes to capture local biodiversity
Undergraduate at the University of California, Santa Barbara, leads citizen science initiative to engage the public in DNA barcoding to catalog local biodiversity, fostering community involvement in science.

Targeting Toxoplasma parasites and their protein accomplices
Researchers identify that a Toxoplasma gondii enzyme drives parasite's survival. Read more about this recent study from the Journal of Lipid Research.

Scavenger protein receptor aids the transport of lipoproteins
Scientists elucidated how two major splice variants of scavenger receptors affect cellular localization in endothelial cells. Read more about this recent study from the Journal of Lipid Research.