Annual Meeting

Using bacteria to clean the environment

Núria  Negrão
April 28, 2021

In recent years, concerns have heightened about increasing amounts of drugs in the environment, particularly in water. While the impact of this environmental pollution is not well understood, some evidence indicates that these drugs may be entering the food chain. Researchers  believe that most of the drugs that end up in fresh water first accumulate at wastewater treatment facilities. Therefore, there is a need to eliminate the drugs at these facilities.

Ashley Robinson, a senior biochemistry major at Hamline University who plans to start graduate school in the fall, started doing research in her sophomore year. She is presenting a poster at the 2021 ASBMB Annual Meeting on this topic, the third research project she has worked on with Betsy Martínez–Vaz.

Kathryn Malody
Ashley Robinson works in the biological safety hood at the Martínez–Vaz lab.

The researchers’ goal was to find bacteria that break down metformin, a drug commonly used to treat diabetes in the U.S. and around the world. Little research has been done on the impact of pollution with metformin and its byproduct, guanylurea, which are not fully metabolized by humans and thus are excreted into wastewater systems. “We consider them to be emerging pollutants,” Robinson said.

Ashley Robinson & James Aukema
This graphic represents the topics of Robinson’s research. With increasing prescription of the Type 2 diabetes drug metformin (top), both metformin and its predominant metabolite, guanylurea (bottom), are water pollutants of emerging concern worldwide. The researchers recently isolated a strain of Pseudomonas that can completely degrade guanylurea from a wastewater treatment facility (middle). They identified and characterized a guanylurea-degrading enzyme, guanylurea hydrolase.

Studies have demonstrated the potential for metformin to disrupt some hormones, she explained. The drug  is considered an endocrine disruption agent in some small fishes, and guanylurea has been shown to interfere with the nitrogen cycle in soil. Little is known about its bioaccumulation potential.

“Can these molecules pass up the food chain?” Robinson said. “That is one concern that we have.”

The research team collected samples at a local wastewater treatment facility from several stages of the treatment process. The bacteria in the samples were then grown in the lab under limiting conditions, meaning the bacteria were not given all the nutrients they needed. In this case, their only source of nitrogen was metformin, so most of the bacteria that survived were species that could use metformin as a nitrogen source. The team then used metagenomics to identify the enzymes involved in the breakdown of guanylurea and its transformation product guanidine. They identified three enzymes: guanylurea hydrolase, carboxyguanidine deiminase and allophanate hydrolase.

Robinson and her colleagues are now working to identify the enzyme that breaks down metformin in the initial step that forms guanylurea. They hope the enzymes they find could be used to break down metformin and guanylurea at wastewater treatment facilities, keeping these pollutants out of freshwater systems.


Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Núria  Negrão

Núria Negrão is a medical writer and editor at Cactus Communications.

Related articles

Enzymes: Still cool after all these years
Shelley Copley & Hung-wen (Ben) Liu
Arginine tango
Nicole Lynn
Varghese roams from forests to enzymes
Guananí Gómez–Van Cortright
From the journals: JBC
Emily Ulrich
From the journals: JLR
Jeyashree Alagarsamy

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Ten interesting quotes from the JBC archives
Journal of Biological Chemistry

Ten interesting quotes from the JBC archives

Feb. 20, 2025

Older papers include archaic quirks and long-abandoned biological concepts. Some show flashes of ideas that grew into their own fields, and others show that some things never change.

Lipid biomarkers hold clues to stroke recovery
Journal News

Lipid biomarkers hold clues to stroke recovery

Feb. 18, 2025

Scientists at the University of Arizona found that a lipid mediator accumulates with the waves of inflammation associated with stroke and foamy macrophages.

From the JBC archives: Madness, indoles and mercury-based cathartics
Journal of Biological Chemistry

From the JBC archives: Madness, indoles and mercury-based cathartics

Feb. 11, 2025

A 1907 paper sought to resolve an ongoing question of whether indole, a bacterial molecule in the gut, could cause insanity if overproduced.

From the journals: JBC
Journal News

From the journals: JBC

Feb. 7, 2025

Linking modified cysteines to cell migration. Recognizing protein tags for degradation. Disrupting C. difficile toxin production. Read about recent JBC papers on these topics.

Becoming a scientific honey bee
Essay

Becoming a scientific honey bee

Feb. 5, 2025

At the World Science Forum, a speaker’s call for scientists to go out and “make honey” felt like the answer to a question Katy Brewer had been considering for a long time.

Mutant RNA exosome protein linked to neurodevelopmental defects
Journal News

Mutant RNA exosome protein linked to neurodevelopmental defects

Feb. 4, 2025

Researchers at Emory University find that a missense mutation impairs RNA exosome assembly and translation and causes neurological disease.