Lipid News

Hippocampal lipids linked to brain disorders

Luísa Santa–Marinha Tiago Gil Oliveira
By Luísa Santa–Marinha and Tiago Gil Oliveira
Sept. 6, 2022

The hippocampus is a fundamental brain region for memory processes, and its function is impaired early in the onset of neurodegenerative disorders such as Alzheimer’s disease, or AD.

The hippocampus (shown in red) can be organized along its longitudinal axis, segregating two poles: the posterior and anterior (in humans) or the dorsal and ventral (in rodents).
Ana Coelho
The hippocampus (shown in red) can be organized along its longitudinal axis, segregating two poles: the posterior and anterior (in humans) or the dorsal and ventral (in rodents).

Most studies addressing the hippocampus have considered it as a whole structure, but it also can be divided into subregions along its longitudinal axis, segregating dorsal and ventral poles. For instance, the dorsal hippocampus, or DH, contributes differentially to specific dimensions of spatial memory, while the ventral hippocampus, or VH, is proposed to be implicated predominantly in behaviors linked to emotions.

Lipids are major brain constituents, so we performed mass spectrometry lipidomic analysis of hippocampal subregions along the longitudinal axis. Within the lipidomic signatures we uncovered, we observed that the DH presents increased levels of phosphatidic acid and decreased levels of phosphatidylcholine compared to the VH, potentially implicating the phospholipase D, or PLD, pathway in DH–VH axis regulation.

Although six PLDs are found in mammals, only PLD1 and PLD2 have reported canonical PLD activity, which is based on the hydrolysis of phosphatidylcholine in the presence of water to free choline and phosphatidic acid, a known second messenger signaling lipid. Using mice that were genetically altered to lack Pld1 and Pld2 genes, we gathered data to support the hypothesis that PLD1 and PLD2 are the only contributors to PLD activity in the mouse forebrain.

PLD1 ablation significantly decreased the hippocampal levels of phosphatidic acid, affecting predominantly the DH lipidome, but upon PLD2 ablation, only minor lipid changes occurred, including increased PLD products suggesting PLD1 upregulation.

Since PLD1 was the main PLD activity source, we then focused predominantly on characterizing the effects of PLD1 ablation and showed that the mice lacking Pld1 presented specific deficits in novel object recognition and social interaction, disruption in dendritic arborization, and altered synaptic plasticity in the DH. Overall, we determined that PLD1 ablation impairs hippocampal functioning, predominantly affecting the DH, which, due to its allocated functions, is predicted to be particularly affected in Alzheimer’s disease.

We previously had observed that PLD2 ablation is protective in mice genetically altered to have Alzheimer’s. Future studies should address cross-regulation mechanisms between PLD1 and PLD2 and how these can be used to develop therapeutic strategies to treat or prevent hippocampal dysfunction and memory deficits.

Want more lipid research news?

Check out Lipid Trends, a curated collection of hot picks from the world of lipid research, brought to you by LIPID MAPS.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Luísa Santa–Marinha
Luísa Santa–Marinha

Luísa Santa–Marinha recently earned a Ph.D. in medicine and is now a postdoctoral researcher at the Life and Health Sciences Research Institute in the School of Medicine, University of Minho, and a psychiatry resident at Centro Hospitalar Vila Nova de Gaia/Espinho in Vila Nova de Gaia, Portugal.

Tiago Gil Oliveira
Tiago Gil Oliveira

Tiago Gil Oliveira is an assistant professor at the Life and Health Sciences Research Institute in the School of Medicine, University of Minho, and a neuroradiologist at Hospital de Braga, both in Braga, Portugal.

Related articles

Lipid regulation of mitochondria
Yoshihiro Adachi, Miho Iijima & Hiromi Sesaki
From the journals: JLR
Carmen Morcelle
From the journals: MCP
Renae Crossing
From the journals: JLR
Meric Ozturk
From the journals: JLR
Laura Elyse McCormick

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Gene-mutation pathway discovery paves way for targeted blood cancers therapies
News

Gene-mutation pathway discovery paves way for targeted blood cancers therapies

Nov. 3, 2024

A new study by researchers at the universities of Texas and Chicago explains the enzymatic activity that’s needed for tumor suppression in leukemias and other cancers.

Candy binges can overload your gut microbiome
News

Candy binges can overload your gut microbiome

Nov. 2, 2024

While most Halloween candies contain lots of sugar, some are better for your gut microbiome than others.

Water rescues the enzyme
Essay

Water rescues the enzyme

Oct. 31, 2024

“Sometimes you must bend the rules to get what you want.” In the case of using water in the purification of calpain-2, it was worth the risk.

Virtual issue celebrates water in ASBMB journals
Journal News

Virtual issue celebrates water in ASBMB journals

Oct. 30, 2024

Read a dozen gold open-access articles covering exciting research about the society’s 2024 Molecule of the year.

There are worse things in the water than E. coli
News

There are worse things in the water than E. coli

Oct. 29, 2024

E. coli levels determined whether Olympic swimmers could dive into the Seine this past summer. But are these bacteria the best proxy for water contamination?

Biobots arise from the cells of dead organisms
News

Biobots arise from the cells of dead organisms

Oct. 27, 2024

Given the right conditions, certain types of cells are able to self-assemble into new lifeforms after the organism they were once part of has died.