Breathe deep — for August, it’s oxygen
We mark the 150th anniversary of Dimitri Mendeleev’s periodic table of chemical elements this year by highlighting elements important for life. So far, we’ve covered hydrogen, iron, sodium, potassium, chlorine, copper, calcium, phosphorus, carbon and nitrogen.

For August, we selected oxygen, a highly reactive nonmetal with chemical symbol O and atomic number 8. Oxygen tends to fill its two unpaired electron shells by accepting electrons from other atoms via covalent bonding. It forms oxide compounds with a variety of elements, and its most common oxidation state is -2, but it also can exist in oxidation states of -1, +1 and +2.
After hydrogen and helium, oxygen is the third most abundant chemical element in the known universe. It is the second most abundant element in the Earth’s geosphere after iron and the most abundant element by mass in the Earth’s crust — at about 47% to 49%. Oxygen makes up about 89% of the world’s oceans, and diatomic oxygen gas constitutes about 20% of the Earth’s atmosphere — second only to nitrogen.
Oxygen is an important contributor to the evolution of all life on Earth. The earliest cells used components of the early Earth’s atmosphere — CO, CO2, N2 and CH4 — to synthesize organic compounds with the help of volcanic heat and lightning. Cells gradually developed pigments that capture visible light from the sun, acquired the ability to use H2O as the electron donor in photosynthetic reactions and started to eliminate O2 as waste. Under these conditions, the earth’s atmosphere grew richer in oxygen.
Aerobic organisms that live in habitats with a plentiful supply of O2 transfer electrons from fuel molecules to oxygen, deriving energy for preservation and growth. Their anaerobic counterparts have evolved in environments devoid of oxygen and transfer their electrons to nitrate, sulfate or carbon dioxide, forming dinitrogen, hydrogen sulfide and methane, respectively.
Aerobe cells obtain molecular oxygen from the surrounding medium by diffusion through their plasma membrane. However, oxygen is poorly soluble in the cytoplasm and extracellular milieu, and it cannot be diffused over long distances. Organisms have evolved water-soluble proteins that use transition metals such as iron and copper to store and transport oxygen in aqueous environments. Proteins such as hemoglobin and myoglobin use iron in the prosthetic group heme to bind oxygen reversibly and move it through tissues.
Cytochromes also use heme to transfer electrons in oxidation-reduction reactions during cellular respiration and photosynthesis. The constant movement of electrons inside the cell generates reactive oxygen species as byproducts, mostly superoxide ions and hydrogen peroxide. The immune cells of some vertebrates and certain plants use these reactive species to destroy invading microorganisms and pathogens.
Oxygen is a major constituent of the biological molecules in living beings. Chemical groups that contain oxygen include the hydroxyls, carbonyls and carboxyls in alcohols plus aldehydes, ketones, carboxylic acids and esters. These organic compounds are the building blocks for proteins, nucleic acids, carbohydrates and fats, the structural components of cells and tissues. Oxygen is also an important constituent of inorganic compounds important for life, such as water and phosphate.
A year of (bio)chemical elements
Read the whole series:
For January, it’s atomic No. 1
For February, it’s iron — atomic No. 26
For March, it’s a renal three-fer: sodium, potassium and chlorine
For April, it’s copper — atomic No. 29
For May, it’s in your bones: calcium and phosphorus
For June and July, it’s atomic Nos. 6 and 7
Breathe deep — for August, it’s oxygen
Manganese seldom travels alone
For October, magnesium helps the leaves stay green
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

A new kind of stem cell is revolutionizing regenerative medicine
Induced pluripotent stem cells are paving the way for personalized treatments to diabetes, vision loss and more. However, scientists still face hurdles such as strict regulations, scalability, cell longevity and immune rejection.

Engineering the future with synthetic biology
Learn about the ASBMB 2025 symposium on synthetic biology, featuring applications to better human and environmental health.

Scientists find bacterial ‘Achilles’ heel’ to combat antibiotic resistance
Alejandro Vila, an ASBMB Breakthroughs speaker, discussed his work on metallo-β-lactamase enzymes and their dependence on zinc.

Host vs. pathogen and the molecular arms race
Learn about the ASBMB 2025 symposium on host–pathogen interactions, to be held Sunday, April 13 at 1:50 p.m.

Richard Silverman to speak at ASBMB 2025
Richard Silverman and Melissa Moore are the featured speakers at the ASBMB annual meeting to be held April 12-15 in Chicago.

From the Journals: JBC
How cells recover from stress. Cancer cells need cysteine to proliferate. Method to make small membrane proteins. Read about papers on these topics recently published in the Journal of Biological Chemistry.