News

Using artificial intelligence to discover new treatments for superbugs

Machine learning is pointing researchers toward molecules that are structurally different from current antibiotics
Fabiola De Marchi
By Fabiola De Marchi
July 11, 2021

Antimicrobial resistance is an emerging threat to healthcare systems worldwide. As a consequence of the spread of drug-resistant bacteria, also called “superbugs,” medical treatments could become ineffective for an increasing number of people in the next years. To fix this huge problem, chemists are asked to find new effective antibiotics. 

Superbugs-445x297.jpg
Alexander Klepnev on Wikimedia Commons.

Drug discovery is an expensive and time-consuming process during which pharmaceutical chemists look for new candidate molecules to interact with a particular target protein or pathway causing the disease. Chemists screen large libraries of thousands to millions of molecules, looking for compounds with specific biological effects and low toxicity. However, these screenings are not very efficient: if chemical libraries don’t include molecules with enough structural diversity, chemists will fail to discover antibiotics with molecular structures different from the ones already tested in laboratories or clinical trials. 

Now machine learning is flanking chemoinformatics through innovative deep neural network approaches to find new drugs. An example of how this approach works can be seen in a recent study by James Collins and coworkers at MIT. First, researchers trained a neural network model to predict growth inhibition of Escherichia coli using a set of 2335 diverse molecules; then, they applied the optimized neural network model to screen large chemical libraries with more than 107 million molecules. 

Recent improvements in machine learning can speed up and lower the costs of drug discovery

They ended up with a list of candidate molecules structurally different from known antibiotics, and ranked them based on their predicted biological activity. Among those candidates, they found that halicin, a compound under investigation as a treatment for diabetes, displayed high efficacy against E. coli and a large spectrum of pathogens such as Acinetobacter baumanii, at the top list of resistant bacteria which urgently requires new antibiotics.

Research groups are currently developing similar deep learning approaches to find new compounds that could fight the COVID-19 virus. This suggests how recent improvements in machine learning can assist chemists’ work to speed up and lower the costs of the drug discovery process.

This story originally appeared on Massive Science, an editorial partner site that publishes science stories by scientists. Subscribe to their newsletter to get even more science sent straight to you.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Fabiola De Marchi
Fabiola De Marchi

Fabiola De Marchi is a science writer for Massive Science.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

What if a virus could reverse antibiotic resistance?
News

What if a virus could reverse antibiotic resistance?

Jan. 19, 2025

In promising experiments, phage therapy forces bacteria into a no-win dilemma that lowers their defenses against drugs they’d evolved to withstand.

Tapping into bacterial conversations
News

Tapping into bacterial conversations

Jan. 18, 2025

Bonnie Bassler has helped usher in a new branch of science centered on quorum sensing, the process by which bacteria communicate with one another and orchestrate collective tasks.

From the journals: JLR
Journal News

From the journals: JLR

Jan. 17, 2025

Can diacylglycerol combat athlete hyperuricemia? Inhibiting a cardiac enzyme improves metabolism. Targeting angiopoietins to combat liver injury. Read about papers on these topics recently published in the Journal of Lipid Research.

Liver enzyme holds key to adjusting to high-protein diets
Journal News

Liver enzyme holds key to adjusting to high-protein diets

Jan. 14, 2025

Researchers at the University of Geneva show that glutamate dehydrogenase controls blood alkalinity during fasting.

Adults grow new brain cells
News

Adults grow new brain cells

Jan. 11, 2025

How does the rare birth of these new neurons contribute to cognitive function?

From the journals: JBC
Journal News

From the journals: JBC

Jan. 9, 2025

Histone demethylase inhibited by own sequence. MicroRNA reduces cell cycle–related apoptosis. Multipurpose antibiotic takes on staph infections. Read about recent JBC papers on these topics.