News

New class of antimicrobials discovered in soil bacteria

Leila Gray
By Leila Gray
May 5, 2024

Researchers have discovered toxic protein particles, shaped like umbrellas, that soil bacteria known as Streptomyces secrete to squelch competitors, especially others of their own species. 

The discovery of the umbrella toxin particles and related information about their structures, composition and mode of action were published April 17 in Nature

Umbrella-shaped antibacterial toxin particles drift toward and engage a bacterial target cell.
Angela Gao
Umbrella-shaped antibacterial toxin particles drift toward and engage a bacterial target cell.

The umbrella toxin proteins are the latest example of these bacteria’s varied strikes on their microscopic rivals. The crowded, diverse bacteria communities in which they live are a melee of antimicrobial attacks, counterattacks and defenses. 

Ironically, many clinically used antibiotics derive directly from, or are inspired by, molecules that bacteria use against each other in their natural habitat. Streptomyces’ chemical weaponry against their competitors is one of the richest sources of such molecules. Among them is the common,  broad-spectrum drug streptomycin. 

What makes these newly detected antibacterial toxins different is that, unlike the Streptomyces’ small-molecule antibiotics, umbrella toxins are large complexes  composed of multiple proteins. They are also far more specific in the bacteria they target, compared with small-molecule antibiotics. 

The authors of the Nature paper speculate that these properties of umbrella toxins explain why they escaped discovery for more than 100 years of research on toxins produced by Streptomyces.

Genes encoding umbrella toxins were originally uncovered through a bioinformatics search for new bacterial toxins. In biochemical and genetic experiments led by Qinqin Zhao in Joseph Mougous’ microbiology lab at the University of Washington  School of Medicine, the scientists learned that these toxins associate with other proteins in a large complex.

Cryo-electron microscopy of these protein complexes was performed by Young Park in the laboratory of David Veesler, professor of biochemistry at the UW School of Medicine and an Investigator of the Howard Hughes Medical Institute. 

These studies revealed that the toxin complexes Qinqin isolated adopt a striking appearance befitting their discovery in Seattle. They look like umbrellas.

 “The shape of these particles is quite peculiar, and it will be interesting in future work to learn how their unusual morphology helps them eliminate target bacteria,” noted Mougous, a professor of microbiology at the UW School of Medicine and a Howard Hughes Medical Investigator. 

The scientists then sought to determine the targets of these toxins by screening their effects on every organism they could conceivably target, from fungi to 140 different bacteria, including some taken  from sorghum plants in the lab of study author Devin Coleman at the University of California-Berkeley and the U.S. Department of Agriculture Agricultural Research Service. . 

Among these potential adversaries, the toxins specifically targeted their own brethren: other Streptomyces species. 

 “We think this exquisite specificity may be due to the proteins that make up the spokes of the umbrella, which vary across the particles. These include proteins that might latch onto specific sugars found on the surface of competitor bacteria,” commented study author S. Brook Peterson, a senior scientist in the Mougous lab.

By analyzing the thousands of publicly available bacterial genomes, study authors Dapeng Zhang of St. Louis University and his graduate student Youngjun Tan  found that many other species of bacteria also have the genes to manufacture umbrella particle toxins. Interestingly, these species all form branching filaments, an unusual mode of growth among bacteria. 

In addition to the many questions remaining to be answered about the basic biology of umbrella toxin particles, Mougous and his colleagues are intrigued by their potential clinical applications.

They suspect that the bacteria that cause tuberculosis and diphtheria may be sensitive to umbrella toxins. They note these same bacteria have become resistant to traditional antibiotics. Umbrella toxin particles might be worth exploring, the scientists suggested, for their potential to subdue these serious disease-causing bacteria. 

This article is republished from the UW Newsroom website. You can read the original here.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Leila Gray
Leila Gray

Leila Gray is a science news writer and editor at the University of Washington School of Medicine in Seattle in the UW Medicine media relations office.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.

Animals have used bioluminescence to communicate for millions of years
News

Animals have used bioluminescence to communicate for millions of years

July 13, 2024

Despite its widespread occurrence, scientists don’t yet know when or where this phenomenon first emerged, or its original function.

Getting to the genetic basis of cardiovascular disease
Journal News

Getting to the genetic basis of cardiovascular disease

July 11, 2024

Edwin G. Peña Martínez received a JBC Tabor award for associating the condition with mutations in noncoding sequences.

Microparticles safeguard vitamins and information
News

Microparticles safeguard vitamins and information

July 9, 2024

Scientists aim to use nanotechnology to combat malnutrition and improve medical recordkeeping in impoverished parts of the world.

Why AlphaFold 3 needs to be open source
Essay

Why AlphaFold 3 needs to be open source

July 7, 2024

The powerful AI-driven software from DeepMind was released without making its code openly available to scientists.

Summertime can be germy
Advice

Summertime can be germy

July 6, 2024

A microbiologist explains how to avoid getting sick at the barbecue, in the pool or on the trail.