Health Observance

Huntington’s disease: a rare cousin of Alzheimer’s

A snapshot to raise awareness
Chloe Kirk
May 14, 2023

Many of us have heard of the neurological disorder Alzheimer’s disease, which affects 1 in 9 over the age of 65. But fewer are familiar with a rarer form of dementia called Huntington’s disease which affects just 5.7 of every 100,000 people.

May is Huntington’s Disease Awareness Month, so let’s dive in a bit on what this disease is and where we are in treating it.

Discovery and diagnosis of Huntington’s

Huntington’s is an inherited neurological disorder that breaks down nerve cells involved in voluntary movement. The disease was first characterized by George Huntington in his 1872 paper detailing patients’ loss of motor control, jerky movements, personality changes, and cognitive decline. Huntington documented a hereditary pattern for the disease, but it wasn’t until 1983 when the Huntington gene (HTT) was molecular mapped to a human chromosome.

Gene regulation

HTT regulates neuronal and glial function in the brain, but an abnormal expansion of glutamine (polyQ) leads to Huntington’s. These abnormal HTT proteins form glue-y plaques in the brain — clumps of the protein with a specific Beta-sheet fold and difficult-to-dissolve (insoluble) structure.

Treating the plaques

Amyloid plaques are a characteristic among many neurological diseases (i.e. alpha-synuclein in Parkinson’s, amyloid-beta in Alzheimer’s). These diseases are difficult to treat due to their rigid and insoluble nature and the lack of tools able to disassemble these plaques in cells.

Current treatments of Huntington’s disease focus on limiting involuntary movements, but unfortunately this is preventative management and not a cure.

Recent drug approval for Alzheimer’s targets the amyloid plaque related to the disease, beta-amyloid, and many think similar approaches can be used for other amyloid plaque based diseases including Huntington’s.

Related stories

Huntingtin through a multiomic lens: A study shows that the mutant protein that causes Huntington’s disease can alter the binding properties of another protein, perhaps accounting for some of the mutation’s far-flung cellular effects.

A very delicate balance: Could blocking lysosomal gatekeeper PIKfyve slow neurodegeneration?

A family history of Alzheimer’s sparks interest in basic research: JBC Herbert Tabor Early Career Investigator Award winner Jenna Lentini shares her work at Discover BMB.

Overcoming missed connections to battle Alzheimer’s: Researchers identify a protein that may allow some people to resist dementia despite plaque accumulation.

Reimagining drugs for rare brain disorder: Researchers develop new pipeline to screen large number of existing compounds to find a therapy for an ataxia.

Neurodegenerative disease linked to microtubules: A team at McGill University reports a new role for sacsin, the protein mutated in a rare hereditary ataxia.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Chloe Kirk

Chloe Kirk is working toward her Ph.D. in biochemistry and molecular biology at the University of Miami. Her interests are science research, communication and outreach.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mining microbes for rare earth solutions
Award

Mining microbes for rare earth solutions

Jan. 14, 2026

Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Feature

Fueling healthier aging, connecting metabolism stress and time

Jan. 8, 2026

Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Award

Mapping proteins, one side chain at a time

Jan. 7, 2026

Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Exploring the link between lipids and longevity
Profile

Exploring the link between lipids and longevity

Jan. 2, 2026

Meng Wang will present her work on metabolism and aging at the ASBMB Annual Meeting, March 7-10, just outside of Washington, D.C.

Defining a ‘crucial gatekeeper’ of lipid metabolism
Award

Defining a ‘crucial gatekeeper’ of lipid metabolism

Dec. 31, 2025

George Carman receives the Herbert Tabor Research Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

The science of staying strong
Feature

The science of staying strong

Dec. 26, 2025

Muscles power every movement, but they also tell the story of aging itself. Scientists are uncovering how strength fades, why some species resist it and what lifestyle and molecular clues could help preserve muscle health for life.