Messy data, robust conclusions
Elodie Ghedin and Christine Vogel had wanted to work together for years. They were friendly colleagues at New York University, both running interdisciplinary labs: Ghedin's focused on genomics and Vogel's on proteomics.
birth in 2020.
The opportunity to collaborate arose in 2016 with what Vogel playfully recalled as "a call from the NIH saying, 'Elodie, can you help us fix Zika?'"
Program officers at the National Institutes of Health had $152 million in emergency funding to learn more about the emerging virus as quickly as possible. They called on Ghedin and others with experience in viruses and in neglected tropical diseases.
At the time, one clinical challenge was differentiating between infections with Zika and related viruses, including the deadlier dengue and chikungunya, when both were circulating. Polymerase chain reaction, or PCR, diagnostics can differentiate the two viruses but only early in infection. If a patient suffers through a few days of fever and aches before arriving at the hospital, it may be too late to detect viral RNA. Because the viruses are so similar, antibody tests often used later in disease tend to be inconclusive.
During outbreaks of both Zika and dengue in 2016 and 2017, doctors at the University of the West Indies in Trinidad did their best to diagnose patients based on ambiguous lab tests and secondary Zika symptoms such as vomiting and intense pain behind the eyes. They also started a clinical trial, collecting serum samples from over 60 patients.
"We were lucky we even got access to these samples," Ghedin said; competition among researchers was intense.
The data set was challenging to work with. There was no healthy control group, and some records were missing information about symptoms; one even lacked the participant's gender. Although the researchers had planned parallel transcriptome and proteome analyses, they had to scrap the transcriptomics, because the samples' RNA had degraded somewhere between the clinic in the Caribbean and their freezers in New York.
After proteomic analysis and rigorous statistical filtering, the two teams identified 13 proteins with different abundance between Zika and dengue infections, as they wrote recently in the journal Molecular & Cellular Proteomics. The differences, although small, could give new insights into Zika disease biology. For example, Ghedin said, they were surprised to observe that most proteins upregulated in Zika compared to dengue patients also are linked to pregnancy — which may yield new hypotheses about how the virus causes pregnancy complications and long-term health problems for newborns. The researchers emphasized that more validation work needs to be done before their observations can be used in the clinic.
Although urgency about understanding Zika ebbed with the epidemic, Vogel and Ghedin, who now works at the National Institute for Allergy and Infectious Diseases, continue to collaborate on multiomics studies. While studying samples from COVID-19 patients, Vogel has relied on lessons she learned from the Zika study.
"In the early days (of an outbreak), you do not have controlled studies. You just have whatever samples you can get," she said.
"I find a lot of my research is like that," Ghedin added. "You do what you can with the samples you can actually lay your hands on."
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Lipid profiles reveal sex differences in type 2 diabetes
Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta’s hormone network
Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.

Spider-like proteins spin defenses to control immunity
Researchers from Utrecht University discovered two distinct binding modes of a spider-shaped immune inhibitor found in serum.