Mining millets
Millets are ancient grains and cereals with origins in Africa, the Middle East and Asian countries including China and India, where they are food staples. In addition to growing in harsh environments and enduring drought or attacks by pests, millets are often less processed and yield higher nutritional benefits than grains such as corn, rice and wheat.
Those conventional grains of the Western diet are well studied, but scientists know little about the bioactive food species in major and minor millets, including the distribution of lipids, or fat-soluble compounds; the composition of fatty acids, or lipid building blocks; and the presence of nutraceuticals, or substances in millets and food that benefit physiological health.
Sugasini Dhavamani, a research assistant professor at the University of Illinois at Chicago, and her team have studied the nutri-lipidomic profiles of major and minor millet seeds and oils.
“I am passionate about lipid research,” Dhavamani said, “I love working at the University of Illinois because we have amazing equipment and facilities, and great means for collaboration.”
The oils of grains are not commercially available, so the researchers first extracted lipids from the millets, then analyzed samples using high-performance liquid chromatography and gas chromatography-mass spectrometry.
“The oil extraction takes time,” Dhavamani said, adding that the researchers face other challenges. “After extraction we often get a low quantity of lipids, which can also cause difficulty. Stability is a concern because the lipids are easily oxidized.”
After profiling sorghum millet, little millet, finger millet, proso millet, kodo millet, pearl millet and foxtail millet, Dhavamani and colleagues found that oleic acid, linoleic acid and alpha-linoleic acid, or omega-9,-6 and -3, are the three major fatty acid species present in millets and seed oils.
“Most of the millets evaluated contained omega-9 and omega-6 and a small amount of omega-3 fatty acids, which help to lower cholesterol and blood pressure levels, and can benefit chronic disease,” Dhavamani said. “Millets also have nutraceuticals, which are helpful for lowering inflammation.”
In the future, the researchers want to expand this work into animal models, where Dhavamani can assess the health benefits of millet consumption, followed by examining proteomics and metabolomics of millets; however, experiments of this scale require increased funding.
Details
Sugasini Dhavamani will present this research from 5:30 to 6:30 p.m. CDT on Sunday, March 24, at Discover BMB 2024, the American Society for Biochemistry and Molecular Biology annual meeting in San Antonio. Her poster will be at board 326.
Abstract title: Nutri-lipidomics, bioactive lipids and antioxidant potential of major and minor millet seed and oil — a novel approach
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Guiding grocery carts to shape healthy habits
Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Quantifying how proteins in microbe and host interact
“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.
Leading the charge for gender equity
Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.
CRISPR gene editing: Moving closer to home
With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.
Finding a missing piece for neurodegenerative disease research
Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.
From the journals: JLR
Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.