Journal News

From the journals: JLR

Lydia Smith
March 7, 2024

What activates T cells in psoriasis? Lysosomal acid lipase in liver disease. A controlled diet targets heart disease risk. Read about papers on these topics recently published in the Journal of Lipid Research.

 

What activates T cells in psoriasis?

Psoriasis is a disease commonly identified by lesions; skin cells proliferate, white blood cells infiltrate and lipid metabolism is altered in the skin. In the past, researchers have shown that n-3 polyunsaturated fatty acids, or PUFAs, may suppress this inflammation, thus slowing disease progression. A recent study in the Journal of Lipid Research by Sophie Morin and a team at Laval University aimed to identify the role of n-3 PUFAs — specifically eicosapentaenoic acid, or EPA — in T cell activation and polarization in psoriasis.

Characteristically, psoriasis causes an increase in IL-17A, an inflammatory cytokine produced primarily by the Th17 subset of helper T cells, commonly known as CD4+ T cells.  Morin’s team found that, in the presence of EPA, IL-17A production is reduced, and FOXP3+ regulatory T cell production increases. They determined that EPA inhibition of STAT3, a signaling protein on the cell surface that activates and polarizes Th17 cells, prevented polarization to a Th17 proinflammatory phenotype. This inhibition was specific to STAT3; EPA did not reduce polarization to a proinflammatory Th1 phenotype via STAT1. 

The researchers used a 3D model of psoriatic skin to show that EPA reduced proliferation of skin cells, transduction protein phosphorylation and transcription activation. They also noted that the NF-κB pathway was altered, which led to increased concentrations of Fas, a death receptor located on the cell surface, causing increased cell death.

The researchers deduced that EPA and other n-3 PUFAs act as antiinflammatory mediators of psoriasis by simultaneously producing regulatory T cells and reducing proinflammatory T cell phenotypes, as well as altering major signaling pathways promoting psoriasis symptom reduction. 

 

Lysosomal acid lipase in liver disease

Lysosomal acid lipase, LAL, plays a key role in metabolism and is the only enzyme known to degrade both cholesteryl esters and triglycerides at an acidic pH.  Dysfunction of LAL causes a rare, autosomal recessive genetic disorder known as LAL deficiency, or LAL-D, and researchers have found that reduced LAL activity contributes to the progression of nonalcoholic fatty liver disease, or NAFLD.  In a recent paper published in the Journal of Lipid Research, Ivan Bradić at the Medical University of Graz and collaborators aimed to learn more about liver-related pathologies of LAL through proteomic profiling. 

In mice genetically altered to systemically lack the LAL gene, the researchers noted significant alterations in the proteome compared to their wild-type counterparts and to mice genetically altered to lack hepatocyte-specific LAL.  Results indicated substantial liver remodeling, upregulation of glycolysis-associated proteins, increased cholesterol metabolism and hydrolase concentration, and decreased production of proteins associated with lipid and fatty acid metabolism. 

Evidence of macrophage abundance, immunity, autophagy, apoptosis and immune processes involving myeloid cells increased in the mice lacking the LAL gene, suggesting higher levels of inflammation. This suggests metabolic alteration, inflammation and restructuring of the liver in LAL-D or NAFLD, which is most strongly modeled in models systematically lacking the LAL gene. These findings will aid in further characterization and potential therapeutic development for NAFLD. 

 

Controlled diet targets heart disease risk

Saturated fatty acids, or SFAs, are found in foods such as full-fat dairy, red meat and poultry. Scientists have linked SFAs to production of low-density lipoprotein cholesterol, or LDL-C, which increases the risk of cardiovascular disease, or CVD.  In the past, researchers have found that lipoprotein(a), or Lp(a), is similar to LDL-C, but poses an independent risk for CVD. While these factors are true for most ethnicities, individuals of African American descent experience a higher risk. For this reason, Hayley G. Law at the University of California, Davis and her collaborators aimed to identify an SFA-dependent relationship between Lp(a) and CVD risk in African American populations. They wrote about their work in a study recently published in the Journal of Lipid Research.

Study participants ate two diets sequentially, each for five weeks. The first was similar to the average American diet, or AAD, while the second contained a decreased amount of SFA.  This diet resembles the dietary approaches to stop hypertension, or DASH, diet, which was supplemented with carbohydrates.  As expected, switching from an AAD diet to a DASH diet resulted in a significant reduction in cholesterol, specifically LDL-C. Lp(a) levels were increased upon switching to the DASH diet, which the researchers speculate may be due to the carbohydrate supplementation.  In the future, they may examine this relationship more deeply, determine the specific mechanisms that cause Lp(a) increases with SFA reduction and identify appropriate nutritional replacements.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Lydia Smith

Lydia Smith has a B.S. in molecular cell biology and a minor in chemistry, which she received from California State University, Long Beach. She is continuing on to receive her Ph.D. in microbiology and immunology at the University of Utah and is a volunteer contributor for ASBMB Today. 

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Pan-kinase inhibitor for head and neck cancer enters clinical trials
Journal News

Pan-kinase inhibitor for head and neck cancer enters clinical trials

March 18, 2025

A drug targeting the scaffolding function of multiple related kinases halts tumor progression.

Sweet secrets of sperm glycosylation
Journal News

Sweet secrets of sperm glycosylation

March 12, 2025

Scientists from Utrecht University uncover similar glycosylation patterns in sperm from bulls, boars and humans, distinct from those found in blood across species. These findings may improve IVF and farming techniques.

From the Journals: JLR
Journal News

From the Journals: JLR

March 11, 2025

Promising therapeutic candidate for steatosis. Unique lipid profiles in glycogen storage disease. Microglial lactic acid mediates neuroinflammation. Read about these recent papers.

Meet Robert Helsley
Interview

Meet Robert Helsley

March 6, 2025

The Journal of Lipid Research junior associate editor studies chronic liver disease and was the first in his family to attend college.

From the Journals: MCP
Journal News

From the Journals: MCP

March 4, 2025

Protein acetylation helps plants adapt to light. Mapping protein locations in 3D tissues. Demystifying the glycan–protein interactome. Read about these recent papers.

Exploring life’s blueprint: Gene expression in development and evolution
In-person Conference

Exploring life’s blueprint: Gene expression in development and evolution

March 3, 2025

Meet Julia Zeitlinger and David Arnosti — two co-chairs of the ASBMB’s 2025 meeting on gene expression, to be held June 26-29, in Kansas City, Missouri.