News

Researchers identify new way to attack herpesviruses

Kate O'Rourke
By Kate O'Rourke
Jan. 30, 2022

new study published this week in the journal mBio has opened the door to a new approach to attacking herpesviruses. The study demonstrated that targeting two metal ion-dependent enzymes of human herpesviruses with two compounds can inhibit the replication of the virus. The finding provides new opportunities to developing agents against herpesviruses. 

“A lot of people know the herpes simplex viruses, but there is actually a family of 9 different herpesviruses including cytomegalovirus (CMV) which causes a lot of problems for immunocompromised people, folks getting transplants and chemotherapy patients for example. We need better therapeutic agents that can be used in these very vulnerable populations,” said co-author of the study Dennis Wright, professor of medicinal chemistry in the School of Pharmacy at the University of Connecticut. “Right now, the therapeutic agents that are out there aren’t terribly effective in terms of being able to treat all the viruses, and many of them have a significant dose-limiting toxicities and associated side effects."  

Ideally, said Wright, there would be one drug that would inhibit the reactivation of all nine herpesviruses. Co-study author Sandra K. Weller, a distinguished professor of molecular biology and biophysics in the School of Medicine at the University of Connecticut, identified targets that would allow just that. She identified herpesvirus enzymes that require two magnesiums for the herpesvirus to replicate.

“The majority of drug discovery efforts against herpesviruses has focused on nucleoside analogs that target viral DNA polymerases. We are pursuing a strategy based on targeting two-metal-ion-dependent viral enzymes,” said Weller. 

The researchers tested the ability of a panel of compounds to inhibit specific two metal ion-dependent enzymes as well as herpesvirus replication. The panel of compounds tested included HIV integrase inhibitors, the anti-influenza agent baloxavir, 3 natural products previously shown to exhibit anti-herpes simplex virus activity, and two 8-hydroxyquinolones, AK-157 and AK-166. 

While HIV integrase inhibitors have been reported to inhibit replication of herpesviruses, the researchers found the integrase inhibitors exhibited weak overall anti-HSV-1 activity.  However, the researchers found that 8-hydroxyquinolones displayed strong antiviral activity against both HSV-1 and CMV and could inhibit one or more of the two metal ion dependent enzymes.  This opens up the possibility of potentially developing dual targeting agents against herpesviruses.  

This article was adapted from a press release by the American Society for Microbiology. It has been edited for style.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Kate O'Rourke
Kate O'Rourke

Kate O'Rourke is a freelance science writer living in Portland, Maine. She has been writing about science and human and animal health for over 20 years.
 

Related articles

Finding a way to combat long COVID
Marissa Locke Rottinghaus
Structure of the key protein for an HCV vaccine
Lisa Eshun–Wilson & Alba Torrents de la Peña

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.

Animals have used bioluminescence to communicate for millions of years
News

Animals have used bioluminescence to communicate for millions of years

July 13, 2024

Despite its widespread occurrence, scientists don’t yet know when or where this phenomenon first emerged, or its original function.

Getting to the genetic basis of cardiovascular disease
Journal News

Getting to the genetic basis of cardiovascular disease

July 11, 2024

Edwin G. Peña Martínez received a JBC Tabor award for associating the condition with mutations in noncoding sequences.

Microparticles safeguard vitamins and information
News

Microparticles safeguard vitamins and information

July 9, 2024

Scientists aim to use nanotechnology to combat malnutrition and improve medical recordkeeping in impoverished parts of the world.

Why AlphaFold 3 needs to be open source
Essay

Why AlphaFold 3 needs to be open source

July 7, 2024

The powerful AI-driven software from DeepMind was released without making its code openly available to scientists.