Feature

Increasingly versatile peptide drugs for diabetes

Laurel Oldach
Dec. 13, 2022

Diabetes affects an estimated 37 million Americans. The disease affects the body’s control of circulating sugar, usually through changes in tissue responses to insulin.

Incretins, peptide hormones that influence insulin secretion, have emerged in recent decades as drug targets for diabetes. Glucagon-like peptide 1 receptor agonists, peptide drugs that mimic the incretin GLP-1, improve glycemic control among diabetic patients. But they are less effective than the much more invasive treatment of bariatric surgery, which leaves pharmaceutical researchers wondering whether these drugs can be improved.

Scientists have looked to other incretins, beginning with glucose-dependent insulinotropic polypeptide, or GIP. GLP-1 and GIP have a similar alpha-helical structure and significant sequence overlap, and both are released from the gastrointestinal tract to reduce circulating glucose by stimulating insulin secretion.

3D structural renderings show the backbone structures of GLP-1, glucagon and GIP. Researchers are exploring ways to combine the three peptides, which are very similar in structure but rarely released into the bloodstream at the same time, into a drug that combines the signaling effects of all three.
3D structural renderings show the backbone structures of GLP-1, glucagon and GIP. Researchers are exploring ways to combine the three peptides, which are very similar in structure but rarely released into the bloodstream at the same time, into a drug that combines the signaling effects of all three.

This year, the U.S. Food and Drug Administration approved the first peptide drug that works as a bifunctional agonist of both GLP-1 and GIP receptors. The drug, tirzepatide, causes weight loss and improves cardiometabolic and glycemic outcomes in diabetic patients. Its amino acid sequence, based on GIP, is engineered to bind both GIP and GLP-1 receptors, with modifications to boost its half-life by reducing its susceptibility to proteases and improving its binding to albumin.

Meanwhile, industrial research labs are looking to expand from bifunctional to trifunctional peptide drugs that target GLP-1, GIP and also glucagon receptors. Adding glucagon to the mix is expected to have complementary effects on glycemic control, obesity and diabetes. Researchers at Eli Lilly and Company wrote in a statement to ASBMB Today, “Our hypothesis considers that GLP-1 reduces appetite and GIP enhances GLP-1-induced reduction of appetite and glucagon enhances energy expenditure and combination of all those effects may produce more weight loss.”

This year, two papers published in the journal Cell Metabolism reported on trifunctional agonists that can activate all three receptors. Both drugs’ sequences use insights from alignment and 3D structural examination to merge the features of each peptide that are important for receptor binding and balance potency against all three receptors. In obese mice and monkeys, the triple agonists reduced body weight even in animals that lacked the GLP-1 receptor.

Both drugs were tested in humans in small preliminary trials. Sanofi discontinued work on its drug in 2019 after the preliminary human trial; Eli Lilly has continued to develop its drug, with two effectiveness and safety trials set to begin this year. These may be the first of many; in their paper, the Lilly scientists observed that “targeting all 3 of these receptors has evolved into the next generation of drug development for treatment of T2D and obesity.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Related articles

A road to survival
Marissa Locke Rottinghaus
Listening to ketamine
Emily Underwood

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Opinions

Opinions highlights or most popular articles

The monopoly defined: Who holds the power of science communication?
Essay

The monopoly defined: Who holds the power of science communication?

Feb. 12, 2025

“At the official competition, out of 12 presenters, only two were from R2 institutions, and the other 10 were from R1 institutions. And just two had distinguishable non-American accents.”

Bigger is better when it comes to scientific conferences
ASBMB Annual Meeting

Bigger is better when it comes to scientific conferences

Feb. 7, 2025

Researchers have a lot of choices when it comes to conferences and symposia. A large conference like the ASBMB Annual Meeting allows you to get the most bang for your buck.

How I made the most of my time as an undergrad
Essay

How I made the most of my time as an undergrad

Jan. 30, 2025

An assistant professor of biology looks back at the many ways he prepared (or didn’t) for his future when he was in college.

I find beauty in telling stories about giants
Science Communication

I find beauty in telling stories about giants

Jan. 29, 2025

Andrea Lius wished she could find a focus for her scientific research — until she realized that what she really liked was talking to other scientists about the focus of their work.

Leveraging social media to share science
Science Communication

Leveraging social media to share science

Jan. 23, 2025

Scientist and educator Elisabeth Marnik explains how to combat misinformation, such as the popular myth that drinking bleach will prevent infections.

Dancing cancer
Science Communication

Dancing cancer

Jan. 16, 2025

A molecular biologist and a choreographer describe how they came to work together.