News

Gene discoveries could help prevent deadly coronary artery disease

Josh Barney
By Josh Barney
Oct. 21, 2023

An international team of scientists has identified nearly a dozen genes that contribute to calcium buildup in our coronary arteries that can lead to life-threatening coronary artery disease, a condition responsible for up to one in four deaths in the United States. Doctors may be able to target these genes with existing medications — or possibly even nutritional supplements — to slow or halt the disease’s progression. The researchers have published their findings in the journal Nature Genetics. 

“By sharing valuable genotype and phenotype datasets collected over many years, our team was able to uncover new genes that may foreshadow clinical coronary artery disease,” said researcher Clint L. Miller, PhD, of the University of Virginia School of Medicine’s Center for Public Health Genomics. “This is a critical first step in identifying the biological mechanisms to target for primary prevention of coronary artery disease.”

Emily Faith Morgan, UVA University Communications

Even before people develop clinical atherosclerotic coronary artery disease, doctors can detect calcium buildup inside the walls of the coronary arteries using non-invasive computed tomography (CT) scans. This reliable measure of subclinical coronary atherosclerosis strongly predicts future cardiovascular events such as heart attacks or strokes, leading causes of death globally. This calcium accumulation is also linked to other age-related diseases, such as dementia, cancer, chronic kidney disease and even hip fractures.

Despite the known role of genetics in coronary calcium buildup, only a handful of contributing genes had been identified. So Miller and his collaborators were eager to identify new genetic factors that influence our risk for coronary calcium buildup.

They did this by analyzing data collected from more than 35,000 people of European and African ancestry around the world. This was the largest such “meta-analysis” yet conducted to understand the genetic basis of coronary artery calcification.

“Coronary artery calcification reflects the vessel’s accumulation of lifetime exposure to risk factors,” Miller said. “While previous studies from over a decade ago identified a handful of genes, it was clear that larger and more diverse studies would be necessary to begin to identify the pathways underlying coronary artery calcification.”

By combining several statistical analysis methods, the scientists identified more than 40 candidate genes at 11 different locations on our chromosomes linked to coronary artery calcification. Eight of these locations had not been previously connected to coronary calcification at all, and five were not yet reported for coronary artery disease. Genes at these locations play important roles in determining the mineral content of our bones and regulate key metabolic pathways in the formation of calcium deposits, among other functions.

One of the genes the scientists identified, ENPP1, is altered in rare forms of arterial calcification in infants. The researchers also identified genes in the adenosine signaling pathway, which is known to suppress arterial calcification.

To validate their findings, the scientists conducted gene queries and experimental studies in human coronary artery tissues and smooth muscle cells and demonstrated direct effects on calcification and related cellular processes.

Now that the researchers have revealed the genes’ roles in coronary artery calcification, scientists can work to develop drugs (or identify existing ones) that can target the genes or encoded proteins to modulate the calcification process. Some of the promising new targets may even be susceptible to dietary changes or nutrient supplementation, such as with Vitamin C or D.

While additional research needs to be done to determine how best to target these genes and affected pathways, Miller says the new discoveries could set the stage for improved risk stratification or early interventions that prevent the progression of coronary artery disease before it can take hold. That could be a game-changer for treating a disease responsible for more than 17 million deaths annually around the world.

“This interdisciplinary collaboration reveals the power of meta-analyses for an understudied and clinically relevant measurement,” said Miller, of UVA’s Departments of Biochemistry and Molecular Genetics and Public Health Sciences. “We look forward to continued progress in translating these preliminary findings to the clinic, and also to identifying additional genes that could generalize risk prediction across more diverse populations.”

This article was first published by UVA Today. Read the original.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Josh Barney
Josh Barney

Josh Barney writes about medical discovery at UVA Health and curates UVA's Making of Medicine medical research blog.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.

Animals have used bioluminescence to communicate for millions of years
News

Animals have used bioluminescence to communicate for millions of years

July 13, 2024

Despite its widespread occurrence, scientists don’t yet know when or where this phenomenon first emerged, or its original function.

Getting to the genetic basis of cardiovascular disease
Journal News

Getting to the genetic basis of cardiovascular disease

July 11, 2024

Edwin G. Peña Martínez received a JBC Tabor award for associating the condition with mutations in noncoding sequences.

Microparticles safeguard vitamins and information
News

Microparticles safeguard vitamins and information

July 9, 2024

Scientists aim to use nanotechnology to combat malnutrition and improve medical recordkeeping in impoverished parts of the world.

Why AlphaFold 3 needs to be open source
Essay

Why AlphaFold 3 needs to be open source

July 7, 2024

The powerful AI-driven software from DeepMind was released without making its code openly available to scientists.