The molecular biology behind exercise
Lifting and lowering weight — these two actions affect muscle structure differently. During a bicep curl, lifting a weight shortens the muscle and lowering lengthens it. We call these activities concentric and eccentric exercises, respectively. Studying these exercises is crucial in sports medicine because they affect strength, bulk and rehabilitation outcomes differently.
Understanding the biology behind muscle movement also helps to optimize exercise protocols, and a recent study by Jiawei Du and a team at the Beijing Sport University in China, published in the journal Molecular & Cellular Proteomics, seeks to do that.
“This study aimed to explore the molecular mechanisms underlying muscle adaptation to eccentric and concentric exercises by using advanced proteomic techniques,” Du said. “This aligns with our broader goal of optimizing training regimens for athletes and individuals undergoing rehabilitation.”
Cells must adapt to changing energy requirements and changing muscle shapes that result from exercise. This adaptation process requires some regulations at the genetic level. Thus, examining these changes helps us to understand what happens in the cells during exercise. With advances in next-generation sequencing technology and other proteomic techniques, researchers can analyze the global genome or proteome profiles and compare them before and after exercise.
In the MCP study, two groups of men did either concentric or eccentric resistance training for four weeks. Muscle biopsies taken before and after training were analyzed to identify and quantify proteins. The scientists investigated 3,172 proteins in total, and they found that expression changed in 122 proteins during eccentric exercise and in 101 proteins during concentric exercise.
“Use of comprehensive proteomic analysis has provided detailed insights into the molecular adaptations in muscle tissue during training,” Du said. “For instance, proteins related to oxidative phosphorylation were inhibited in eccentric but activated in concentric training, indicating different metabolic adaptations. This distinction provides new insights into how specific training types can be tailored for desired outcomes in muscle performance and recovery.”
Oxidative phosphorylation is a metabolic process that uses oxygen to generate high-energy molecules in the form of adenosine triphosphate, or ATP. Before this work, other scientists had reported that strength training increases oxidative phosphorylation in mitochondria, the organelles that power cells. However, no researchers had yet determined how specific types of training can change expression of proteins related to oxidative phosphorylation.
Twenty young men participated in this study. Considering physiological, especially hormonal differences between males and females, the findings could differ with women.
“For example,” Du said, “estrogen has a protective effect on muscle, potentially leading to less muscle fiber damage and different protein expression patterns in response to the same training protocols.”
The findings have broad implications for sports science, particularly in the design of training and rehabilitation programs. The group plans to extend exercise duration in future trials to observe long-term adaptations. Also, they think that observing a more diverse participant pool, including women, older adults and athletes from various sports, would help generalize the findings and further detail the molecular mechanisms across different populations.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Adults grow new brain cells
How does the rare birth of these new neurons contribute to cognitive function?
From the journals: JBC
Histone demethylase inhibited by own sequence. MicroRNA reduces cell cycle–related apoptosis. Multipurpose antibiotic takes on staph infections. Read about recent JBC papers on these topics.
Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity
Pathogens have distinct electrical charges, shapes and sizes. Measuring how quickly they move through an electric field can help researchers separate different species in a sample.
Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment
This recent study by a team from Bill Sullivan’s lab at the Indiana University School of Medicine was named a Journal of Biological Chemistry Editor’s Pick.
Of genes, chromosomes and oratorios
Jenny Graves has spent her life mapping genes and comparing genomes. Now she’s created a musical opus about evolution of life on this planet — bringing the same drive and experimentalism she brought to the study of marsupial chromosomes.
Ubiquitination by TRIM13: An ingredient contributing to diet-induced atherosclerosis
Researchers help unravel the molecular mechanism behind plaque formation in cardiovascular disease.