
Living in a bubble
In our cells, proteins assemble into amazingly dynamic macromolecular machines whose function and regulation underlie life’s essential processes. A perfect example is gene expression, in which cells depend on versatile biomolecular machines to harness the information in DNA.
Understanding the inner workings of these intricate assemblies is among the great challenges in the biomedical sciences. Knowledge was, until recently, severely limited by their sizes and complexity.
Therefore, our field has been greatly excited by the incredible advances in cryo-electron microscopy and its “resolution revolution,” which we will feature in our symposia at the American Society for Biochemistry and Molecular Biology annual meeting, Discover BMB, in Seattle in March.
A contrast to the highly structured protein complexes lies in the often underappreciated structurally disordered protein regions, which also will be in in the limelight during our symposia. Recent studies have shown that, far from being useless, these disordered regions can cause liquid–liquid phase separation — an omnipresent phenomenon in eukaryotic cells underpinning the formation of membraneless organelles.
Localization of protein machines within membraneless organelles allows them to work more efficiently or achieve necessary regulatory interactions. Conversely, condensate disruption compromises the function of the protein machines within, leading to human diseases.
Keywords: Protein complexes, gene expression, genome maintenance, intrinsically disordered regions, lipid–lipid phase separation, computational biology, cancer, neurodegeneration.
Who should attend: Anyone who works with proteins with ordered or disordered regions. (Well, isn’t that everybody?)
Theme song: “With a Little Help from My Friends” by the Beatles. (The protein machines work so efficiently with the help of the condensates formed by disordered regions of the proteins.)
This session is powered by structured proteins (yang) and droplets (yin).
Speakers
Protein machines at the intersection of genome maintenance and gene regulation
Jessie Zhang (chair), University of Texas at Austin
Ivaylo Ivanov, Georgia State University
Huilin Li, Van Andel Institute
Tanya Paull, University of Texas at Austin
Yuan He, Northwestern University
Methodology investigating disordered proteins and condensates
Ivaylo Ivanov (chair), Georgia State University
Jeetain Mittal, Texas A&M University
Jessie Zhang, University of Texas at Austin
Xavier Darzacq, University of California, Berkeley
Simon Alterti, Technische Universität Dresden
Disordered protein in diseases
James Shorter, University of Pennsylvania
Hao Jiang, University of Virginia
Pinglong Xu, Zhejiang University
Rebecca Page (chair), University of Connecticut
The complete list
Learn about all 11 symposia planned for Discover BMB 2023:- Protein Machines and Disorder
- Regulation of RNA
- Organelles, Mechanisms and Phase Properties of Cellular Quality Control
- Lipid Dynamics and Signals in Membrane and Protein Structure
- Frontiers in Carbohydrate Synthesis and Recognition
- Bias In, Bias Out in Data Science
- Cell Signaling — New Tools and Emerging Concepts
- Education and Professional Development
- Biochemistry of Elemental Cycling
- Advances in Organismal and Cellular Metabolism
- Artificial Intelligence and Machine Learning in Structural Biology, Drug Design and Systems Biology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Using DNA barcodes to capture local biodiversity
Undergraduate at the University of California, Santa Barbara, leads citizen science initiative to engage the public in DNA barcoding to catalog local biodiversity, fostering community involvement in science.

Targeting Toxoplasma parasites and their protein accomplices
Researchers identify that a Toxoplasma gondii enzyme drives parasite's survival. Read more about this recent study from the Journal of Lipid Research.

Scavenger protein receptor aids the transport of lipoproteins
Scientists elucidated how two major splice variants of scavenger receptors affect cellular localization in endothelial cells. Read more about this recent study from the Journal of Lipid Research.

Fat cells are a culprit in osteoporosis
Scientists reveal that lipid transfer from bone marrow adipocytes to osteoblasts impairs bone formation by downregulating osteogenic proteins and inducing ferroptosis. Read more about this recent study from the Journal of Lipid Research.

Unraveling oncogenesis: What makes cancer tick?
Learn about the ASBMB 2025 symposium on oncogenic hubs: chromatin regulatory and transcriptional complexes in cancer.

Exploring lipid metabolism: A journey through time and innovation
Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the ASBMB annual meeting.