Living in a bubble
In our cells, proteins assemble into amazingly dynamic macromolecular machines whose function and regulation underlie life’s essential processes. A perfect example is gene expression, in which cells depend on versatile biomolecular machines to harness the information in DNA.
Understanding the inner workings of these intricate assemblies is among the great challenges in the biomedical sciences. Knowledge was, until recently, severely limited by their sizes and complexity.
Therefore, our field has been greatly excited by the incredible advances in cryo-electron microscopy and its “resolution revolution,” which we will feature in our symposia at the American Society for Biochemistry and Molecular Biology annual meeting, Discover BMB, in Seattle in March.
A contrast to the highly structured protein complexes lies in the often underappreciated structurally disordered protein regions, which also will be in in the limelight during our symposia. Recent studies have shown that, far from being useless, these disordered regions can cause liquid–liquid phase separation — an omnipresent phenomenon in eukaryotic cells underpinning the formation of membraneless organelles.
Localization of protein machines within membraneless organelles allows them to work more efficiently or achieve necessary regulatory interactions. Conversely, condensate disruption compromises the function of the protein machines within, leading to human diseases.
Keywords: Protein complexes, gene expression, genome maintenance, intrinsically disordered regions, lipid–lipid phase separation, computational biology, cancer, neurodegeneration.
Who should attend: Anyone who works with proteins with ordered or disordered regions. (Well, isn’t that everybody?)
Theme song: “With a Little Help from My Friends” by the Beatles. (The protein machines work so efficiently with the help of the condensates formed by disordered regions of the proteins.)
This session is powered by structured proteins (yang) and droplets (yin).
Speakers
Protein machines at the intersection of genome maintenance and gene regulation
Jessie Zhang (chair), University of Texas at Austin
Ivaylo Ivanov, Georgia State University
Huilin Li, Van Andel Institute
Tanya Paull, University of Texas at Austin
Yuan He, Northwestern University
Methodology investigating disordered proteins and condensates
Ivaylo Ivanov (chair), Georgia State University
Jeetain Mittal, Texas A&M University
Jessie Zhang, University of Texas at Austin
Xavier Darzacq, University of California, Berkeley
Simon Alterti, Technische Universität Dresden
Disordered protein in diseases
James Shorter, University of Pennsylvania
Hao Jiang, University of Virginia
Pinglong Xu, Zhejiang University
Rebecca Page (chair), University of Connecticut
The complete list
Learn about all 11 symposia planned for Discover BMB 2023:- Protein Machines and Disorder
- Regulation of RNA
- Organelles, Mechanisms and Phase Properties of Cellular Quality Control
- Lipid Dynamics and Signals in Membrane and Protein Structure
- Frontiers in Carbohydrate Synthesis and Recognition
- Bias In, Bias Out in Data Science
- Cell Signaling — New Tools and Emerging Concepts
- Education and Professional Development
- Biochemistry of Elemental Cycling
- Advances in Organismal and Cellular Metabolism
- Artificial Intelligence and Machine Learning in Structural Biology, Drug Design and Systems Biology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Adults grow new brain cells
How does the rare birth of these new neurons contribute to cognitive function?
From the journals: JBC
Histone demethylase inhibited by own sequence. MicroRNA reduces cell cycle–related apoptosis. Multipurpose antibiotic takes on staph infections. Read about recent JBC papers on these topics.
Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity
Pathogens have distinct electrical charges, shapes and sizes. Measuring how quickly they move through an electric field can help researchers separate different species in a sample.
Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment
This recent study by a team from Bill Sullivan’s lab at the Indiana University School of Medicine was named a Journal of Biological Chemistry Editor’s Pick.
Of genes, chromosomes and oratorios
Jenny Graves has spent her life mapping genes and comparing genomes. Now she’s created a musical opus about evolution of life on this planet — bringing the same drive and experimentalism she brought to the study of marsupial chromosomes.
Ubiquitination by TRIM13: An ingredient contributing to diet-induced atherosclerosis
Researchers help unravel the molecular mechanism behind plaque formation in cardiovascular disease.