![](/getmedia/28ce64e8-991f-4f32-9db7-33ecd46b20df/discoverbmb23-2000x350px_9.jpg?width=2000&height=350&ext=.jpg)
Living in a bubble
In our cells, proteins assemble into amazingly dynamic macromolecular machines whose function and regulation underlie life’s essential processes. A perfect example is gene expression, in which cells depend on versatile biomolecular machines to harness the information in DNA.
Understanding the inner workings of these intricate assemblies is among the great challenges in the biomedical sciences. Knowledge was, until recently, severely limited by their sizes and complexity.
Therefore, our field has been greatly excited by the incredible advances in cryo-electron microscopy and its “resolution revolution,” which we will feature in our symposia at the American Society for Biochemistry and Molecular Biology annual meeting, Discover BMB, in Seattle in March.
A contrast to the highly structured protein complexes lies in the often underappreciated structurally disordered protein regions, which also will be in in the limelight during our symposia. Recent studies have shown that, far from being useless, these disordered regions can cause liquid–liquid phase separation — an omnipresent phenomenon in eukaryotic cells underpinning the formation of membraneless organelles.
Localization of protein machines within membraneless organelles allows them to work more efficiently or achieve necessary regulatory interactions. Conversely, condensate disruption compromises the function of the protein machines within, leading to human diseases.
Keywords: Protein complexes, gene expression, genome maintenance, intrinsically disordered regions, lipid–lipid phase separation, computational biology, cancer, neurodegeneration.
Who should attend: Anyone who works with proteins with ordered or disordered regions. (Well, isn’t that everybody?)
Theme song: “With a Little Help from My Friends” by the Beatles. (The protein machines work so efficiently with the help of the condensates formed by disordered regions of the proteins.)
This session is powered by structured proteins (yang) and droplets (yin).
Speakers
Protein machines at the intersection of genome maintenance and gene regulation
Jessie Zhang (chair), University of Texas at Austin
Ivaylo Ivanov, Georgia State University
Huilin Li, Van Andel Institute
Tanya Paull, University of Texas at Austin
Yuan He, Northwestern University
Methodology investigating disordered proteins and condensates
Ivaylo Ivanov (chair), Georgia State University
Jeetain Mittal, Texas A&M University
Jessie Zhang, University of Texas at Austin
Xavier Darzacq, University of California, Berkeley
Simon Alterti, Technische Universität Dresden
Disordered protein in diseases
James Shorter, University of Pennsylvania
Hao Jiang, University of Virginia
Pinglong Xu, Zhejiang University
Rebecca Page (chair), University of Connecticut
The complete list
Learn about all 11 symposia planned for Discover BMB 2023:- Protein Machines and Disorder
- Regulation of RNA
- Organelles, Mechanisms and Phase Properties of Cellular Quality Control
- Lipid Dynamics and Signals in Membrane and Protein Structure
- Frontiers in Carbohydrate Synthesis and Recognition
- Bias In, Bias Out in Data Science
- Cell Signaling — New Tools and Emerging Concepts
- Education and Professional Development
- Biochemistry of Elemental Cycling
- Advances in Organismal and Cellular Metabolism
- Artificial Intelligence and Machine Learning in Structural Biology, Drug Design and Systems Biology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
![From the JBC archives: Madness, indoles and mercury-based cathartics](/getattachment/e26ef62e-685d-450f-b5e4-113430cfb888/JBC-archives-02-11-25-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
From the JBC archives: Madness, indoles and mercury-based cathartics
A 1907 paper sought to resolve an ongoing question of whether indole, a bacterial molecule in the gut, could cause insanity if overproduced.
![From the journals: JBC](/getattachment/05f125e8-aa95-4a9e-bd9c-896b3f72923c/FTJ-JBC-02-07-25-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
From the journals: JBC
Linking modified cysteines to cell migration. Recognizing protein tags for degradation. Disrupting C. difficile toxin production. Read about recent JBC papers on these topics.
![Becoming a scientific honey bee](/getattachment/7cb3cada-2249-4121-a9f5-63aa5bd6f213/Becoming-scientific-honey-bee-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
Becoming a scientific honey bee
At the World Science Forum, a speaker’s call for scientists to go out and “make honey” felt like the answer to a question Katy Brewer had been considering for a long time.
![Mutant RNA exosome protein linked to neurodevelopmental defects](/getattachment/dbfd7c8c-5104-4903-8e97-2c82f9d97262/Mutant-RNA-exosome-protein-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
Mutant RNA exosome protein linked to neurodevelopmental defects
Researchers at Emory University find that a missense mutation impairs RNA exosome assembly and translation and causes neurological disease.
![Study sheds light on treatment for rare genetic disorder](/getattachment/0f757086-65aa-452a-a87e-e2f381aee087/Treatment-for-rare-genitic-disorder-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
Study sheds light on treatment for rare genetic disorder
Aaron Hoskins’ lab partnered with a drug company to understand how RNA-targeting drugs work on spinal muscular atrophy, a disorder resulting from errors in production of a protein related to muscle movement.
![Examining mechanisms of protein complex at a basic cell biological level](/getattachment/f09ff397-048a-494d-9eea-d4b5eae8938d/Munson-480x270.jpg?lang=en-US&width=480&height=270&ext=.jpg)
Examining mechanisms of protein complex at a basic cell biological level
Mary Munson is co-corresponding author on a study revealing functions and mechanisms of the exocyst that are essential to how molecules move across a membrane through vesicles in a cell.