Annual Meeting

The era of “smart” organelles

A Discover BMB symposium: Organelles, Mechanisms and Phase Properties of Cellular Quality Control
W. Mike Henne Cheryl A. Kerfeld
By W. Mike Henne and Cheryl A. Kerfeld
Sept. 28, 2022

Organelles are the fundamental units of cellular organization, and our understanding of their roles in cell physiology has evolved dramatically since they first were described in the early 20th century. Though organelles originally were thought of as simple compartments for biochemical reactions and confined to eukaryotes, new studies have revealed “smart” roles for them in fine-tuning metabolism as well as serving as platforms coordinating signaling and quality-control pathways in both bacteria and eukaryotes.

Recent work illuminates the organizational principles governing how organelles cleverly coordinate cell quality control. These reveal how organelles create microenvironments for metabolic pathways, how they facilitate interorganelle communication to sense and respond to specific cues, and how the phase properties of lipids and proteins equip organelles to protect cells from stress and maintain organismal homeostasis.

Our symposia at the American Society for Biochemistry and Molecular Biology’s annual meeting, Discover BMB, in Seattle in March illustrate these themes and feature work in an array of fields, including prokaryotic and eukaryotic cell biology, cancer biology, and phase separation biophysics.

Just like in the song “Whatever It Takes” by Imagine Dragons, organelles are equipped to do whatever is necessary for cells to adapt and survive the ever-present challenges of life.

Keywords: Bacterial microcompartments, interorganelle communication, protein and lipid phase separation, mitochondrial metabolism.

Who should attend: Anyone interested in learning how organelles are constructed, organized and responsive to signals. Also people interested in the phase properties of proteins and lipids in organelle biology.

Theme song: “Whatever It Takes” by Imagine Dragons.

The session is powered by lipids, proteins and cellular stress.

Speakers

Bacterial organelles
Luning LuUniversity of Liverpool
Danielle Tullman–ErcekNorthwestern University
Cheryl Kerfeld (chair), Michigan State University
Arash KomelliUniversity of California, Berkeley

Phase separation in organelle structure and function
W. Mike Henne (chair), University of Texas Southwestern Medical Center at Dallas
David SavageUniversity of California, Berkeley/Howard Hughes Medical Institute
Martin JonikasPrinceton University
Alex MerzUniversity of Washington School of Medicine

Inter-organelle communication
Rushika Perera (chair), University of California, San Francisco
Karin ReinischYale University
Laura LacknerNorthwestern University
Sarah CohenUniversity of North Carolina at Chapel Hill

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
W. Mike Henne
W. Mike Henne

W. Mike Henne is an assistant professor in the department of cell biology at the University of Texas Southwestern Medical Center in Dallas. His lab studies lipid droplets and the organization of metabolism in cells.

Cheryl A. Kerfeld
Cheryl A. Kerfeld

Cheryl A. Kerfeld is a researcher at the US Department of Energy Plant Research Lab and a professor of biochemistry and molecular biology at Michigan State University.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

From the JBC archives: Madness, indoles and mercury-based cathartics
Journal of Biological Chemistry

From the JBC archives: Madness, indoles and mercury-based cathartics

Feb. 11, 2025

A 1907 paper sought to resolve an ongoing question of whether indole, a bacterial molecule in the gut, could cause insanity if overproduced.

From the journals: JBC
Journal News

From the journals: JBC

Feb. 7, 2025

Linking modified cysteines to cell migration. Recognizing protein tags for degradation. Disrupting C. difficile toxin production. Read about recent JBC papers on these topics.

Becoming a scientific honey bee
Essay

Becoming a scientific honey bee

Feb. 5, 2025

At the World Science Forum, a speaker’s call for scientists to go out and “make honey” felt like the answer to a question Katy Brewer had been considering for a long time.

Mutant RNA exosome protein linked to neurodevelopmental defects
Journal News

Mutant RNA exosome protein linked to neurodevelopmental defects

Feb. 4, 2025

Researchers at Emory University find that a missense mutation impairs RNA exosome assembly and translation and causes neurological disease.

Study sheds light on treatment for rare genetic disorder
News

Study sheds light on treatment for rare genetic disorder

Feb. 2, 2025

Aaron Hoskins’ lab partnered with a drug company to understand how RNA-targeting drugs work on spinal muscular atrophy, a disorder resulting from errors in production of a protein related to muscle movement.

Examining mechanisms of protein complex at a basic cell biological level
News

Examining mechanisms of protein complex at a basic cell biological level

Feb. 1, 2025

Mary Munson is co-corresponding author on a study revealing functions and mechanisms of the exocyst that are essential to how molecules move across a membrane through vesicles in a cell.