News

This protein does “The Twist”

Luis Sandoval
By Luis Sandoval
Aug. 25, 2024

Proteins are constantly performing a kind of dance. They move and contort their bodies to fulfill specific functions inside our bodies. The NMDAR protein executes an especially hard dance routine in our brains. One wrong step can lead to a range of neurological disorders. NMDAR binds to the neurotransmitter, glutamate, and another compound, glycine. These bindings control NMDAR’s dance steps. When their routine is over, the NMDAR opens. This open ion channel generates electrical signals critical for cognitive functions like memory.

The problem is that scientists couldn’t figure out the last step in NMDAR’s routine—until now. Cold Spring Harbor Laboratory Professor Hiro Furukawa and his team have deciphered the critical dance move in which NMDAR rotates into an open formation. In other words, they’ve learned the NMDAR “Twist.”

To capture this key step, Furukawa and his team used a technique called electron cryo-microscopy (cryo-EM), which freezes and visualizes proteins in action. First, the team had to find a way to keep a type of NMDAR called GluN1-2B in its open pose long enough to image it. So, Furukawa teamed up with Professors Stephen Traynelis and Dennis Liotta at Emory University. Together, they discovered a molecule that favors NMDAR in an open position.

This animation takes us inside NMDAR as it dances its way into an open formation.
This animation takes us inside NMDAR as it dances its way into an open formation.

“It’s not the most stable conformation,” Furukawa explains. “There are many pieces dancing independently in NMDAR. They have to coordinate with each other. Everything has to go perfectly to open the ion channel. We need a precise amount of electrical signals at the right time for proper behaviors and cognitions.”

The cryo-EM images allow researchers to see precisely how the NMDAR’s atoms move during its “Twist.” This may one day lead to drug compounds that can teach the correct moves to NMDARs that have lost a step. Better drugs that target NMDARs might have applications for neurological disorders like Alzheimer’s and depression. Furukawa explains:

“Compounds bind to pockets within proteins and are imperfect, initially. This will allow us and chemists to find a way to fill those pockets more perfectly. That would improve the potency of the drug. Also, the shape of the pocket is unique. But there could be something similarly shaped in other proteins. That would cause side effects. So, specificity is key.”

Indeed, there are many types of NMDARs in the brain. Another recent study from Furukawa’s lab offers the first view of the GluN1-3A NMDAR. Surprisingly, its dance moves are completely different. This routine results in unusual patterns of electrical signals.

In other words, we’re mastering the Twist.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Luis Sandoval
Luis Sandoval

Luis Sandoval is a communications specialist at Cold Spring Harbor Laboratory. He writes about science research, education and outreach for the CSHL Newsstand.

 

Related articles

What is chronic itching?
Katherine Harmon Courage
From the journals: May 2019
Gelareh (Abulwerdi) Vinueza, Jonathan Griffin & Kerri Beth Boggs
Adults grow new brain cells
Aswathy Ammothumkandy, Charles Liu & Michael A. Bonaguidi

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Liver enzyme holds key to adjusting to high-protein diets
Journal News

Liver enzyme holds key to adjusting to high-protein diets

Jan. 14, 2025

Researchers at the University of Geneva show that glutamate dehydrogenase controls blood alkalinity during fasting.

Adults grow new brain cells
News

Adults grow new brain cells

Jan. 11, 2025

How does the rare birth of these new neurons contribute to cognitive function?

From the journals: JBC
Journal News

From the journals: JBC

Jan. 9, 2025

Histone demethylase inhibited by own sequence. MicroRNA reduces cell cycle–related apoptosis. Multipurpose antibiotic takes on staph infections. Read about recent JBC papers on these topics.

Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity
News

Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity

Jan. 5, 2025

Pathogens have distinct electrical charges, shapes and sizes. Measuring how quickly they move through an electric field can help researchers separate different species in a sample.

Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment
News

Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment

Jan. 4, 2025

This recent study by a team from Bill Sullivan’s lab at the Indiana University School of Medicine was named a Journal of Biological Chemistry Editor’s Pick.

Of genes, chromosomes and oratorios
Profile

Of genes, chromosomes and oratorios

Jan. 1, 2025

Jenny Graves has spent her life mapping genes and comparing genomes. Now she’s created a musical opus about evolution of life on this planet — bringing the same drive and experimentalism she brought to the study of marsupial chromosomes.