Journal News

New diagnostic finds intact sperm in infertile men

Researchers discover novel protein biomarkers to visualize well-developed sperm to determine if surgical sperm extraction may be successful
Marissa Locke Rottinghaus
June 14, 2023

In a recent study, researchers created a diagnostic test to identify functional sperm in infertile men that could change the treatment of male infertility and assisted reproductive technology.

“Male infertility is a recognized issue and deserves scientific and clinical attention,” said Andrei Drabovich, an assistant professor of laboratory medicine and pathology at the University of Alberta and corresponding author of the Molecular & Cellular Proteomics study.

Immunofluorescence microscopy of sperm cells and testicular tissues. AKAP4 is shown in green, ASPX in red, and cell nuclei in blue.

One in every six couples trying to conceive experience infertility issues. In fact, about 10% of men in the United States are infertile. The most common cause of severe male infertility is a condition known as nonobstructive azoospermia, which results in the absence of sperm in the ejaculate due to poor sperm, or spermatozoa, development.

While assisted reproductive technology has improved exponentially over the past 50 years, according to Drabovich, extracting sperm from men with NOA can take up to 10 hours in the operating room and has varying rates of success.

“Sometimes surgeons can only extract a few intact spermatozoa during a surgery that takes many hours,” Drabovich said.

That’s why he set out to develop a noninvasive method to diagnose NOA and figure out if these men contain intact sperm that could fertilize an egg.

“Tests that show the presence or absence of intact spermatozoa in semen can give a good clue of the total numbers of spermatozoa in the patient,” Drabovich said. “If there are intact spermatozoa in the ejaculate that is a green light for urologist and the surgeon to go ahead with the surgery. However, it is an extreme challenge to find intact spermatozoa in a field of debris.”

Drabovich performed mass spectrometry on semen from men with normal fertility as well as infertile men with biopsy-confirmed obstructive azoospermia or NOA.

After analysis, his team identified two proteins, AKAP4 and ASPX, that are found in intact sperm in men with NOA. They showed that ASPX is located in the head of sperm while AKAPA4 is found in the tail using a method called imaging flow cytometry. During imaging flow cytometry, a machine takes images of individual cells. After running these samples, computational algorithms help the researchers mine the millions of images of cell debris and underdeveloped sperm to identify a few intact sperm cells.   

Since the roles of AKAP4 and ASPX are not fully understood, Drabovich plans to investigate how they contribute to sperm function.

He also said that his work may lead to male birth control drugs in the future.

“We want to see if we can flip the story and try to work on male contraceptives,” Drabovich said. “If we know the function of the protein, we may be able to inhibit it to create a nonhormonal male contraceptive, which is a much desired type of drug at the moment.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Marissa Locke Rottinghaus

Marissa Locke Rottinghaus is the Editorial Content Manager for ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Journal News

Mass spec method captures proteins in native membranes

Nov. 25, 2025

Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.

Method sharpens proteome-wide view of structural changes
Journal News

Method sharpens proteome-wide view of structural changes

Nov. 25, 2025

Researchers developed a method that improves limited proteolysis coupled with mass spectrometry, separating true changes from abundance or splicing effects.

Discoveries made possible by DNA
Feature

Discoveries made possible by DNA

Nov. 24, 2025

The discovery of DNA’s double helix revealed how genetic information is stored, copied and expressed. Revisit that breakthrough and traces how it laid the foundation for modern molecular biology, genomics and biotechnology.

Unraveling the language of histones
Profile

Unraveling the language of histones

Nov. 20, 2025

Philip Cole presented his research on how posttranslational modifications to histones are involved in gene expression and how these modifications could be therapeutically targeted to treat diseases like cancer.