News

Snaking toward a universal antivenom

Scripps Research Communications
By Scripps Research Communications
May 26, 2024

Scripps Research scientists have developed an antibody that can block the effects of lethal toxins in the venoms of a wide variety of snakes found throughout Africa, Asia and Australia.

The antibody, which protected mice from the normally deadly venom of snakes including black mambas and king cobras, is described on February 21, 2024, in Science Translational Medicine. The new research used forms of the toxins produced in the laboratory to screen billions of different human antibodies and identify one that can block the toxins’ activity. It represents a large step toward a universal antivenom that would be effective against the venom of all snakes.

Scripps Research scientists discovered an antibody that represents a large step toward creating a universal antivenom, which would be effective against the venom of all snakes.
Simon Townsley
Scripps Research scientists discovered an antibody that represents a large step toward creating a universal antivenom, which would be effective against the venom of all snakes.

“This antibody works against one of the major toxins found across numerous snake species that contribute to tens of thousands of deaths every year,” says senior author Joseph Jardine, PhD, assistant professor of immunology and microbiology at Scripps Research. “This could be incredibly valuable for people in low- and middle-income countries that have the largest burden of deaths and injuries from snakebites.”

More than 100,000 people a year, mostly in Asia and Africa, die from snakebite envenoming—rendering it more deadly than most neglected tropical diseases. Current antivenoms are produced by immunizing animals with snake venom, and each generally only works against a single snake species. This means that many different antivenoms must be manufactured to treat snake bites in the different regions.

Jardine and his colleagues have previously studied how broadly neutralizing antibodies against the human immunodeficiency virus (HIV) can work by targeting areas of the virus that cannot mutate. They realized that the challenge of finding a universal antivenom was similar to their quest for an HIV vaccine; just like quickly evolving HIV proteins show small differences between each other, different snake venoms have enough variations that an antibody binding to one generally doesn’t bind to others. But like HIV, snake toxins also have conserved regions that cannot mutate, and an antibody targeting those could possibly work against all variants of that toxin.

In the new work, which was largely conducted while Jardine and his colleagues were at the nonprofit scientific research organization IAVI, they isolated and compared venom proteins from a variety of elapids—a major group of venomous snakes including mambas, cobras and kraits. They found that a type of protein called three-finger toxins (3FTx), present in all elapid snakes, contained small sections that looked similar across different species. In addition, 3FTx proteins are considered highly toxic and are responsible for whole-body paralysis, making them an ideal therapeutic target.

With the goal of discovering an antibody to block 3FTx, the researchers created an innovative platform that put the genes for 16 different 3FTx into mammalian cells, which then produced the toxins in the lab. The team then turned to a library of more than fifty billion different human antibodies and tested which ones bound to the 3FTx protein from the many-banded krait (also known as the Chinese krait or Taiwanese krait), which had the most similarities with other 3FTx proteins. That narrowed their search down to about 3,800 antibodies. Then, they tested those antibodies to see which also recognized four other 3FTx variants. Among the 30 antibodies identified in that screen, one stood out as having the strongest interactions across all the toxin variants: an antibody called 95Mat5.

“We were able to zoom in on the very small percentage of antibodies that were cross-reactive for all these different toxins,” says Irene Khalek, a Scripps Research scientist and first author of the new paper. ‘This was only possible because of the platform we developed to screen our antibody library against multiple toxins in parallel.”

Jardine, Khalek and their colleagues tested the effect of 95Mat5 on mice injected with toxins from the many-banded krait, Indian spitting cobra, black mamba and king cobra. In all cases, mice who simultaneously received an injection of 95Mat5 were not only protected from death, but also paralysis. 

When the researchers studied exactly how 95Mat5 was so effective at blocking the 3FTx variants, they discovered that the antibody mimicked the structure of the human protein that 3FTx usually binds to. Interestingly, the broad-acting HIV antibodies that Jardine has previously studied also work by mimicking a human protein.

“It’s incredible that for two completely different problems, the human immune system has converged on a very similar solution,” says Jardine. “It also was exciting to see that we could make an effective antibody entirely synthetically—we did not immunize any animals nor did we use any snakes.”

While 95Mat5 is effective against the venom of all elapids, it does not block the venom of vipers—the second group of venomous snakes. Jardine’s group is now pursuing broadly neutralizing antibodies against another elapid toxin, as well as two viper toxins. They suspect that combining 95Mat5 with these other antibodies could provide broad coverage against many—or all—snake venoms.   

“We think that a cocktail of these four antibodies could potentially work as a universal antivenom against any medically relevant snake in the world,” says Khalek.

This article is republished from the Scripps Research website. Read the original here.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Scripps Research Communications
Scripps Research Communications

This article was written by a member or members of the staff in the Scripps Research Communications Office.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Liver enzyme holds key to adjusting to high-protein diets
Journal News

Liver enzyme holds key to adjusting to high-protein diets

Jan. 14, 2025

Researchers at the University of Geneva show that glutamate dehydrogenase controls blood alkalinity during fasting.

Adults grow new brain cells
News

Adults grow new brain cells

Jan. 11, 2025

How does the rare birth of these new neurons contribute to cognitive function?

From the journals: JBC
Journal News

From the journals: JBC

Jan. 9, 2025

Histone demethylase inhibited by own sequence. MicroRNA reduces cell cycle–related apoptosis. Multipurpose antibiotic takes on staph infections. Read about recent JBC papers on these topics.

Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity
News

Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity

Jan. 5, 2025

Pathogens have distinct electrical charges, shapes and sizes. Measuring how quickly they move through an electric field can help researchers separate different species in a sample.

Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment
News

Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment

Jan. 4, 2025

This recent study by a team from Bill Sullivan’s lab at the Indiana University School of Medicine was named a Journal of Biological Chemistry Editor’s Pick.

Of genes, chromosomes and oratorios
Profile

Of genes, chromosomes and oratorios

Jan. 1, 2025

Jenny Graves has spent her life mapping genes and comparing genomes. Now she’s created a musical opus about evolution of life on this planet — bringing the same drive and experimentalism she brought to the study of marsupial chromosomes.