Journal News

Innovative approach opens the door to COVID nanobody therapies

Joshua A. Krisch
By Joshua A. Krisch
April 15, 2023

COVID is not yet under control. Despite a bevy of vaccines, monoclonal antibodies, and antivirals, the virus continues to mutate and elude us. One solution that scientists have been exploring since the early days of the pandemic may come in the form of tiny antibodies derived from llamas, which target various parts of the SARS-CoV-2 spike protein.

In a new study in the Journal of Biological Chemistry, researchers describe a less expensive way to isolate and identify these so-called nanobodies. The findings will make it easier for scientists around the world to try their hand at discovering nanobodies that target SARS-CoV-2 or other viruses. “Our method is more straightforward and less expensive than existing techniques,” says Rockefeller’s Michael P. Rout. “You do need a llama, but that — along with all the most complicated parts of the process — can be outsourced.”  

The authors have already used this optimized method to identify multiple nanobodies that appear to work against key variants of the virus, including omicron. “COVID is clearly going to be a problem for some time,” Rout says. “We show that many of the nanobodies we have identified with this method target variants-of-concern, so they have real therapeutic potential.”

Nanobody novelty

Nanobodies may work where larger antibodies fail, in part due to their compact size. Studies have shown that nanobodies can squeeze into parts of the SARS-CoV-2 virus that larger antibodies cannot reach. Nanobodies also have unusually long shelf-lives, cost very little to mass-produce and, because of their unique physical properties, could theoretically be inhaled.

Camelids such as llamas naturally produce nanobodies when exposed to a virus, and Rout and colleagues have developed enormous libraries of promising SARS-CoV-2 nanobodies by giving a small dose of COVID protein to llamas (which produce nanobodies in response, much as humans produce antibodies in response to a vaccine). After taking small blood samples from the llamas and sequencing the nanobody DNA, the scientists later transfer key genes to bacteria which, in turn, produce many more nanobodies for lab analysis. 

But screening these nanobody libraries to see how well they work (and which variants they work against) can be time-consuming and expensive. Rout and colleagues have long relied on the “mass spectrometry” technique, which works extraordinarily well but requires substantial expertise to perform and expensive equipment. They wondered whether a recently discovered “yeast display method”, which was potentially far less expensive and simpler, could also effectively sort through their nanobody library.

Rout, in collaboration with Rockefeller’s Fred Cross, started by first optimizing the yeast display method. (The two heads-of-lab took the unusual step of performing most of the benchwork themselves). They then used their optimized method to screen a library of nanobodies that they had previously screened with the mass spectrometry technique. They found that their version of the yeast display method not only identified many of the same nanobody candidates as the other approach, but also identified numerous other candidates that they had missed.

“The method is not ours,” Cross clarifies. “But we made it simpler.”

Toward nanobody therapy

The relatively simple and low-cost procedure described in the paper could empower laboratories in low-resource areas to generate nanobodies against SARS-CoV-2, as well as other viruses. “A researcher anywhere in the world, with fairly limited resources, could use this technique,” Rout says. “The llama-related stuff could be FedEx-ed from North America.” 

For COVID, the long-term goal is that techniques such as these will lower the bar for entry into nanobody research and ultimately produce therapies that prevent infection. “How we’d make the therapeutic is unestablished, as yet,” Cross says. “The specificity is there and the activity is there, but we don’t have a drug yet. It’d be nice if we did. Hopefully someday.”

Because with COVID now transitioning to an endemic disease, novel methods for preventing the infection cannot come soon enough. “New variants become prevalent by evading the immune system,” Cross says. “It’s important to have a fast way to find new nanobodies targeting the variants.”

This article was first published by The Rockefeller University. Read the original.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Joshua A. Krisch
Joshua A. Krisch

Joshua A. Krisch is a science writer for Rockefeller University.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Transforming learning through innovation and collaboration
Award

Transforming learning through innovation and collaboration

Nov. 22, 2024

Neena Grover will receive the William C. Rose Award for Exemplary Contributions to Education at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.

CRISPR gene editing: Moving closer to home
News

CRISPR gene editing: Moving closer to home

Nov. 17, 2024

With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.

Finding a missing piece for neurodegenerative disease research
News

Finding a missing piece for neurodegenerative disease research

Nov. 16, 2024

Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.