Journal News

MCP: Keeping tabs on protein variants

Laurel Oldach
May 1, 2018

Perhaps you have seen a time-lapse video of a busy city sidewalk. As people come and go, they blur together into a crowd with no distinguishing features. You could count the number of people pushing strollers in each frame, but it might be hard to tell how long one parent has been circling the same block with a colicky baby.

As proteins are made and destroyed in a cell, they tend to blur together too. Many proteomics studies measure with precision the number of copies of each protein species but not how long each one lasts. In a new paper in the journal Molecular & Cellular Proteomics, researchers in Bernard Kuster’s lab at the Technical University of Munich report a new approach to determining the lifespan of a great many proteins, and their alternative isoforms, in large data sets.

“Plenty of research has demonstrated that cancer, neurodegenerative diseases, age-related diseases and even aging per se are associated with altered lifespans of single proteins or a global dysregulation of the cellular recycling machinery,” said lead author Jana Zecha. She compares a cell in which proteins are continuously made and destroyed to “a tiny protein production and recycling machinery.” With colleagues, Zecha set out to measure this factory’s output, determining the rates of production and destruction of many different proteins.

The researchers combined two techniques for telling samples apart by their mass: stable isotope labeling by amino acids in cell culture, or SILAC for short, and tandem mass tag labeling, or TMT. The primary SILAC label enabled a pulse-chase experiment, a way of measuring how much of a new amino acid is taken up after it is added to cells. By combining SILAC with TMT, the researchers could achieve high proteome coverage with high reproducibility and accurate counts of each protein. Then they looked for trends over time. For example, a protein’s rate of synthesis can be measured by how much of the new SILAC label appears over time in its spectrum, and degradation is measured by how much the old label disappears.

Other scientists previously had combined the SILAC and TMT methods, but this data set gave an unusually thorough look at protein lifetimes. The researchers found substantial variability among splice variants of proteins, which no one had yet measured in a data set of this size. Because two splice variants from the same gene have many peptides in common, a data set with many measurements at the peptide level was required.

The approach could offer a better way of understanding the basic biology of disease states with altered protein turnover. The researchers also are interested in modifications occurring after translation that may alter turnover rates.

“A proteomewide measurement of turnover rates of modified peptides is the next logical step for us,” Zecha said.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

CRISPR gene editing: Moving closer to home
News

CRISPR gene editing: Moving closer to home

Nov. 17, 2024

With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.

Finding a missing piece for neurodegenerative disease research
News

Finding a missing piece for neurodegenerative disease research

Nov. 16, 2024

Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.

From the journals: JLR
Journal News

From the journals: JLR

Nov. 15, 2024

Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.

Computational and biophysical approaches to disordered proteins
Award

Computational and biophysical approaches to disordered proteins

Nov. 14, 2024

Rohit Pappu will receive the 2025 DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, April 12-15 in Chicago.

From lab to land: Crop modifications are fortifying our food supply against climate change
News

From lab to land: Crop modifications are fortifying our food supply against climate change

Nov. 13, 2024

Scientists explore genetic and biochemical innovations fueling future-proofing agriculture

Join the pioneers of ferroptosis at cell death conference
In-person Conference

Join the pioneers of ferroptosis at cell death conference

Nov. 13, 2024

Meet Brent Stockwell, Xuejun Jiang and Jin Ye — the co-chairs of the ASBMB’s 2025 meeting on metabolic cross talk and biochemical homeostasis research.