Journal News

JBC: How an interest in bipolar disorder drugs led to a better understanding of leukemia

Sasha Mushegian
April 1, 2018

A research project that began 20 years ago with an interest in how lithium treats mood disorders has yielded insights into the progression of blood cancers such as leukemia. The research, which centers on a protein called GSK-3, was published in the Journal of Biological Chemistry.

Lithium is considered a highly effective treatment for bipolar disorder and other mood disorders, but it still works in only a fraction of patients and has a number of side effects. Furthermore, its mechanism of action is poorly understood, hampering efforts to improve on it.

A new project reveals that the enzyme GSK-3, a target of the mood disorder drug lithium, has a role in controlling alternative splicing in cells. This observation may yield insights into leukemia. Courtesy of Mansi Shinde and Simone Sidoli

In 1996, Peter Klein of the University of Pennsylvania discovered that one of lithium’s biological activities was inhibiting GSK-3, an enzyme that modifies other proteins by attaching phosphate molecules, a process called phosphorylation. Lithium’s effect on GSK-3 affected the development of animal cells, but it is still unknown what connection, if any, this has to psychiatric disease.

Since then, Klein — now a professor of medicine at Penn — has been investigating many aspects of GSK-3 activity. “In this paper, we were trying to find out what proteins in the cell are affected by GSK-3 inhibition,” Klein said. “We compared cells with GSK-3 to cells completely lacking GSK-3 to ask how other proteins changed.”

Mansi Shinde, a former graduate student in Klein’s research group, led the new study. “Mood disorders are so multifaceted in terms of the pathways and pathologies involved; it’s really difficult to pin down a specific pathway,” Shinde said. “We said: ‘Let’s look at what GSK-3 does, and that would maybe lead us toward what lithium does.’”

The research team used mass spectrometry to compare phosphorylation of proteins from mouse embryonic stem cells with fully functioning GSK-3 to cells in which the gene encoding GSK-3 had been deleted. The resulting massive data set is called a phosphoproteome — a comprehensive catalog of proteins that are phosphorylated by GSK-3. Analyzing the data yielded some surprising findings.

Conventional wisdom had suggested that GSK-3 phosphorylates proteins that contain a specific amino acid sequence, but the new phosphoproteome showed that the majority of proteins whose phosphorylation depended on GSK-3 did not contain this sequence. Notably, the phosphorylated proteins included a group called splicing factors, which splice together different sections of messenger RNA, changing the proteins they encode. Absence of GSK-3 changed the splicing patterns of more than 200 messenger RNAs.

The finding that GSK-3 could affect RNA splicing pointed to an unexpected connection: leukemia. Several factors newly discovered to be phosphorylated by GSK-3 also are known to be mutated in acute myeloid leukemia, a condition in which aberrant splicing causes uncontrolled white blood cell proliferation. This observation could also explain why one of the side effects of taking lithium is increased white blood cell count.

“The effect on the splicing factors and other mutations associated with leukemia was completely surprising to me,” Klein said. The group now is pursuing investigations into how GSK-3 affects the growth of healthy and leukemic blood cells.

Shinde and Klein are not sure whether GSK-3’s effect on RNA splicing explains its role in mood disorders. The effect of GSK-3 on messenger RNA in neuronal cells, with or without lithium, would need to be examined to determine this. The study underlines how investigations into the basic biological function of a drug target can lead in unexpected directions. The GSK-3 phosphoproteome is “a really large data set,” Shinde said. “It’s a resource for the field.”

“The relevance to leukemia could be direct and something worthy of immediate study,” Klein said. “The role in psychiatric disorders is a major interest of the work, but the impact would be down the road, not immediate.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Raw milk is risky, but airborne transmission of H5N1 from cow’s milk is inefficient in mammals
News

Raw milk is risky, but airborne transmission of H5N1 from cow’s milk is inefficient in mammals

Aug. 31, 2024

Findings suggest that cow’s milk infected with bird flu poses a real risk to humans, but the virus may not spread very far or quickly to others.

From the Journals: MCP
Journal News

From the Journals: MCP

Aug. 30, 2024

A deep learning approach to phosphoproteomics. Untangling complex proteomics mass spec data. Read about these recent papers.

Cholesterol synthesis and cancer
Journal News

Cholesterol synthesis and cancer

Aug. 27, 2024

Researchers find that the active form of a key cholesterol synthesis enzyme is upregulated in endometrial cancer tissues.

This protein does “The Twist”
News

This protein does “The Twist”

Aug. 25, 2024

The NMDAR is involved in numerous cognitive functions including memory, and its movements are tightly coordinated like a choreographed dance routine.

The phageome: A hidden kingdom within your gut
News

The phageome: A hidden kingdom within your gut

Aug. 24, 2024

Human innards are teeming with viruses that infect bacteria. What are they up to?

From the journals: JLR
Journal of Lipid Research

From the journals: JLR

Aug. 23, 2024

Muscle lipids and metabolic syndrome. A new method for detecting peroxisomal disorders. Testing oligonucleotide therapy in NASH. Read about recent papers on these topics