Detecting infection complications with nanoscale bacterial buds
Sepsis is an inflammatory overreaction to an infection, viral or bacterial, within the body and is the leading cause of death in hospitals. The reaction causes changes such as an intense fever or lowered blood pressure, which may damage vital organ systems if not promptly treated. Early detection may help save lives, but diagnosing patients with sepsis remains a clinical challenge.
Outer membrane vesicles, or OMVs, are nanoscale buds released from the outer membranes of Gram-negative bacteria in response to stress or other environmental changes. Bacteria use these OMVs to remove unwanted molecules and share helpful biomolecules with each other. OMVs can also trigger an inflammatory response during infection. Detecting these buds may be a quicker and more efficient way to identify Gram-negative bacterial sepsis than current diagnostic methods.
Nico Burgado, an undergraduate student in Lea Michel’s lab at the Rochester Institute of Technology, has been studying OMVs. “Usually, when doctors are trying to diagnose sepsis, the patients are already on antibiotics so when they take blood samples, no bacteria show up,” Burgado said. “We need a way to diagnose sepsis after they give the antibiotics, and a good way to do that is OMV detection.”
Burgado, Michel and their team explored OMVs in relation to E. coli sepsis. “We can detect biomolecules that are specific to the parent bacteria,” Burgado said. “After we isolate the OMVs, these biomarkers can help us determine which bacteria are causing the sepsis.”
In a recent study, the researchers used blood plasma samples collected from hospital patients by clinicians. The Michel team isolated the OMVs from these samples, using centrifugation, syringe filtering and ultracentrifugation. They then used Western blot analysis to detect the presence of E. coli proteins.
“The antigens are specific for E. coli, so if we detect any bands, that should mean that there’s E. coli OMVs in the plasma sample,” Burgado said.
The study showed that OMV detection is a promising method to diagnose Gram-negative sepsis. “The real clinical significance is that it’s a path to diagnosing sepsis, identifying the bacterial cause early on, and treating patients with the right antibiotics before they either have more complications or pass away,” Burgado said.
So far, the team has shown that, for the most part, they can isolate E. coli OMVs from the plasma of sepsis patients and detect E. coli biomarkers in the samples. In future studies, the researchers plan to test the sensitivity and accuracy of their diagnostic method and establish a baseline for detecting OMVs from E. coli and other common sources of bacterial sepsis.
Details
Nico Burgado will present this research from 4:30 to 5:30 p.m. CDT on Monday, March 25, at Discover BMB 2024, the American Society for Biochemistry and Molecular Biology annual meeting in San Antonio. His poster is at Board 273.
Abstract title: Using outer membrane vesicles to diagnosis sepsis in clinical samples
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Guiding grocery carts to shape healthy habits
Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Quantifying how proteins in microbe and host interact
“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.
Leading the charge for gender equity
Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.
CRISPR gene editing: Moving closer to home
With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.
Finding a missing piece for neurodegenerative disease research
Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.
From the journals: JLR
Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.