Inflammation and diabetic kidney disease: Why mitochondria matter
Diabetes mellitus refers to a group of chronic conditions that affect the body’s ability to effectively use sugar, specifically glucose, resulting in a buildup of sugar in the blood. In 2022, the Centers for Disease Control and Prevention estimated that 11.3% of the U.S. population was diabetic and that 38% of adults over age 18 and 49% of adults over 65 were prediabetic, meaning they had higher-than-normal blood glucose levels.
The long-term health effects of diabetes mellitus can be grim. In addition to deteriorating vision, nerve damage and hearing impairment over time, diabetes can also affect larger organ systems. In the U.S., it is the predominant risk factor for cardiovascular and kidney diseases. Diabetics are at increased risk for hypertension, heart attack and stroke; furthermore, one in three diabetic adults have diabetic kidney disease, or DKD.
In DKD, prolonged elevated glucose in the blood damages blood vessels and nephrons, the cells in the kidney responsible for filtration. Often occurring in parallel with ailments such as high blood pressure, DKD damages kidneys increasingly over time. A recent study in the Journal of Biological Chemistry demonstrated a potential to mitigate this damage by improving the function of mitochondria, a cellular organelle responsible for maintaining and generating energy.
Komuraiah Myakala, a research instructor at Georgetown University, uses animal models that mimic Type 2 diabetic disease progression, known as db/db mice, when testing his hypotheses for DKD.
“We have to pick the right model to understand the disease,” Myakala said. “Every metabolic disease is regulated by different signaling pathways; we need to understand, if there is, a causal relationship in kidney disease progression, and the signaling proteins involved.”
During the study, db/db and healthy mice were given the supplement nicotinamide riboside, or NR. Also known as vitamin B3, NR is a precursor to the biologically functional form of nicotinamide adenine nucleotide, or NAD+, and can increase its levels within the body. A critical co-enzyme in metabolic processes, NAD+ is ubiquitous to every cell type, where it is essential to mitochondria metabolism and generating cellular energy.
The body naturally produces NAD+. With age, levels decline naturally, and low NAD+ also occurs with conditions such as diabetes, cardiovascular disease and neurological disorders.
“The etiology of kidney disease between diabetes and aging are very different,” Myakala said. “Diabetes is usually a higher-grade kidney disease compared to age alone.”
Inflammation is closely associated with damage to the mitochondria, and diabetic kidney disease. Giving NR to the db/db mice reduced inflammation and prevented many of the usual manifestations of kidney decline, for example, levels of blood-protein markers that rise in DKD progression were reduced after NR treatment.
This research helps demonstrate the importance of mitochondrial function in renal disease, particularly in diabetes. Researchers still do not fully understand the mechanisms that link mitochondria and inflammatory disease, and they require further study. This research provides insight, however, into the potential of using supplemental NR to improve mitochondrial function and gives hope for DKD treatment.
Myakala describes his dedication to understanding the mechanisms of kidney disease as “unwavering.” He and his colleagues hope to continue their research as they seek to bridge the gap in understanding that exists between inflammation, mitochondria and kidney disease.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Liver enzyme holds key to adjusting to high-protein diets
Researchers at the University of Geneva show that glutamate dehydrogenase controls blood alkalinity during fasting.
Adults grow new brain cells
How does the rare birth of these new neurons contribute to cognitive function?
From the journals: JBC
Histone demethylase inhibited by own sequence. MicroRNA reduces cell cycle–related apoptosis. Multipurpose antibiotic takes on staph infections. Read about recent JBC papers on these topics.
Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity
Pathogens have distinct electrical charges, shapes and sizes. Measuring how quickly they move through an electric field can help researchers separate different species in a sample.
Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment
This recent study by a team from Bill Sullivan’s lab at the Indiana University School of Medicine was named a Journal of Biological Chemistry Editor’s Pick.
Of genes, chromosomes and oratorios
Jenny Graves has spent her life mapping genes and comparing genomes. Now she’s created a musical opus about evolution of life on this planet — bringing the same drive and experimentalism she brought to the study of marsupial chromosomes.