Due Diligence

The myth of perfection

Kaoru Sakabe
Feb. 1, 2017

With the release of the imaging software Adobe Photoshop in the 1990s, “Photoshopping” entered the English lexicon. Like Google, Photoshop seamlessly has integrated itself into the scientific enterprise. Scientists use the software to tweak images and to generate publication-quality figures. It’s just so easy to create a blemish-free image. But there are guidelines to what is and isn’t acceptable to do with the software. There are a few simple rules to remember.

First, ask yourself whether any changes are needed. The best-case scenario is to be able to present your original, unaltered data in the figure. However, journal editors realize that sometimes the best case isn’t possible — an overly dark H&E stain or an overly bright Coomassie stain of a gel are two examples.

Once you’ve decided it’s appropriate and necessary to make changes, make sure your adjustments are linear. Most journals, including the journals published by the American Society for Biochemistry and Molecular Biology, require that adjustments be made uniformly to every pixel in the entire image. That means using the brightness and contrast functions in Photoshop is acceptable within reason, since these functions apply a linear adjustment to each pixel in the image. Also, go easy on moving the slider (see the figure). Overadjusting the brightness or contrast can hide background features, which is a misrepresentation of your data. Nonlinear adjustments include adjusting the gamma settings or using the “Curves” function in Photoshop. These actions are discouraged, since they do not apply changes equally to the pixels in the image. If these adjustments are used, then you must disclose their use in the figure legend.

Aggressively overadjusting the brightness and/or contrast misrepresents the actual data that were obtained and can mask potential biologically relevant results.Aggressively overadjusting the brightness and/or contrast misrepresents the actual data that were obtained and can mask potential biologically relevant results.

Speaking of data misrepresentation, specifically enhancing, removing or obscuring features would fall into this category. Worried that a faint band won’t support your conclusions? Bothered by the cell debris in the corner of your image? Concerned that the reviewers may say that the co-localization or the co-immunoprecipitation isn’t strong enough? The temptation to enhance or remove these features is real, but this type of manipulation falls into the misconduct category and could have serious consequences.

The final image should look like your original data, warts and all. You always should inspect your final figure and ask yourself if it is a true representation of the original capture or image. If your answer is no (or kind of), you should re-evaluate your figure.

Practically speaking, if any of these issues are discovered during the review of your paper or even after it is published, they could delay publication of your article, result in a correction, or even end in a retraction. More importantly, these issues go deeper and speak about the reproducibility of the work and your integrity as a scientist. Other researchers will not be able to replicate the results shown in your article if some of the data have been enhanced or hidden selectively. Presenting your data in a transparent manner ensures that you have done your due diligence.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Kaoru Sakabe

Kaoru Sakabe is the data integrity manager at the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

'You can't afford to be 15 years behind the parasite'
Award

'You can't afford to be 15 years behind the parasite'

Dec. 3, 2024

David Fidock will receive the Alice and C.C. Wang Award in Molecular Parasitology at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Elucidating how chemotherapy induces neurotoxicity
Award

Elucidating how chemotherapy induces neurotoxicity

Dec. 2, 2024

Andre Nussenzweig will receive the Bert and Natalie Vallee Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Where do we search for the fundamental stuff of life?
Essay

Where do we search for the fundamental stuff of life?

Dec. 1, 2024

Recent books by Thomas Cech and Sara Imari Walker offer two perspectives on where to look for the basic properties that define living things.

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks
News

UCLA researchers engineer experimental drug for preventing heart failure after heart attacks

Nov. 30, 2024

This new single-dose therapy blocks a protein that increases inflammation and shows promise in enhancing muscle repair in preclinical models.

The decision to eat may come down to these three neurons
News

The decision to eat may come down to these three neurons

Nov. 28, 2024

The circuit that connects a hunger-signaling hormone to the jaw to stimulate chewing movements is surprisingly simple, Rockefeller University researchers have found.

Curiosity turned a dietitian into a lipid scientist
Award

Curiosity turned a dietitian into a lipid scientist

Nov. 27, 2024

Judy Storch will receive the Avanti Award in Lipids at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.