Journal News

A jellyfish model to study optogenetics

Adenike Shittu
By Adenike Shittu
Dec. 26, 2023

Box jellyfish, an ancient invertebrate species, have evolved separately from vertebrate animals for over 500 million years. Unlike other jellyfish species, box jellyfish have well-developed eyes similar to those of vertebrates. These eyes have a light-sensitive protein receptor called rhodopsin that enables them to process visual cues such as twilight and color perception, which are essential for their survival.

Shino Inukai, Kota Katayama, Hideki Kandori and colleagues at the Nagoya Institute of Technology in Japan have found that the rhodopsin in jellyfish is similar to that in vertebrates. In a recent article published in the Journal of Biological Chemistry, they describe the structural similarities, photoreaction activity and highly developed visual function of rhodopsin in box jellyfish and vertebrates.

Box jellyfish have the only animal rhodopsin known to activate Gs protein. G proteins are guanine nucleotide-binding proteins. They can transmit signals from receptors on the cell surface to the inside of the cell, where they regulate a wide range of cellular functions and processes. These include maintenance of cellular homeostasis, response to external stimuli, neurotransmission and sensory perception.

Box jellyfish’s rhodopsin, or JelRh, is the only animal rhodopsin that researchers have shown to transduce the G protein signaling pathways. Because jellyfish rhodopsin can control the G proteins’ signaling pathway with light, it is a promising new optogenetics tool.

The authors used JelRh to study how G proteins regulate cyclic adenosine monophosphate induction, or cAMP, which is widely associated with biological processes such as circadian rhythms, cardiac function and behavioral control. In the words of the authors, “the development of jellyfish rhodopsin can be used as a tool to elucidate the molecular mechanisms of diseases caused by abnormal signal transduction through Gs protein,” which include nephrogenic diabetes insipidus and obesity.

While this study shows promising findings, the authors acknowledge certain limitations in this model. The authors’ discovery of JelRh’s distinctive hydrogen bonding network surrounding the retinal chromophore hints at intermediate structural variance in rhodopsin in other invertebrates and vertebrates.

Researchers have not yet characterized other essential defining factors of JelRh. Therefore, as a future work, the authors propose to conduct site-directed mutation measurements to determine the key residues, in GPCR activation. Future structural studies will focus on the photoreaction of the active state to explore how JelRh triggers Gs protein–mediated phototransduction cascade. Specifically, the spectroscopy-based structural study of photoreaction dynamics of Gs-coupled animal rhodopsin will provide insights into the activation mechanism of G protein–coupled receptors.

Looking forward, the team proposes to clarify the light activation and signal transduction mechanisms of JelRh, the only animal rhodopsin that has been shown to transduce Gs signal. Specifically, the aim is to decipher the molecular intricacies underlying the activation of Gs protein.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Adenike Shittu
Adenike Shittu

Adenike Shittu is a biomedi­cal research scientist who is passionate about science communication and an ASBMB Today contributing writer.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

RNA binding proteins with benefits
Research Spotlight

RNA binding proteins with benefits

Jan. 22, 2025

Blanton Tolbert studies the biochemical mechanisms of RNA virus replication while working to make science more accessible, and more interesting, for all people.

A proteomic hunt for phosphosites in the aging brain
Journal News

A proteomic hunt for phosphosites in the aging brain

Jan. 21, 2025

In older mice, researchers found more enzymes that phosphorylate other proteins and changes in phosphorylation levels in proteins associated with neurodegeneration.

What if a virus could reverse antibiotic resistance?
News

What if a virus could reverse antibiotic resistance?

Jan. 19, 2025

In promising experiments, phage therapy forces bacteria into a no-win dilemma that lowers their defenses against drugs they’d evolved to withstand.

Tapping into bacterial conversations
News

Tapping into bacterial conversations

Jan. 18, 2025

Bonnie Bassler has helped usher in a new branch of science centered on quorum sensing, the process by which bacteria communicate with one another and orchestrate collective tasks.

From the journals: JLR
Journal News

From the journals: JLR

Jan. 17, 2025

Can diacylglycerol combat athlete hyperuricemia? Inhibiting a cardiac enzyme improves metabolism. Targeting angiopoietins to combat liver injury. Read about papers on these topics recently published in the Journal of Lipid Research.

Liver enzyme holds key to adjusting to high-protein diets
Journal News

Liver enzyme holds key to adjusting to high-protein diets

Jan. 14, 2025

Researchers at the University of Geneva show that glutamate dehydrogenase controls blood alkalinity during fasting.