Journal News

Researchers decipher critical features of a protein behind ALS

Tomer Velmer
By Tomer Velmer
Dec. 25, 2021

The Sigma-1 receptor (S1R) is a transmembrane protein with important roles in stabilizing cellular functions in both normal physiology and disease. Especially in neurodegenerative diseases, S1R's activity has been shown to provide neuronal protection by stabilizing the cell environment (based on the movement of calcium ions), improving mitochondrial function and reducing a damaging cellular stress caused by the diseases, called endoplasmic reticulum stress. Drugs are now being developed to try to boost these cell protective S1R activities in several diseases.

S1R missense mutations are one of the causes of distal hereditary motor neuronopathies and amyotrophic lateral sclerosis (also known as Lou Gehrig’s disease). ALS is the ailment that afflicted renown late physicist Stephen Hawking. Yet, even though S1R has been studied intensively, basic aspects remained controversial, such as S1R topology and whether it reaches the cell membrane.

A new study led by Tel-Aviv University researcher Gerardo Lederkremer from the Shmunis School of Biomedicine and Cancer Research and Sagol School of Neuroscience, together with Nir Ben Tal from the School of Neurobiology, Biochemistry and Biophysics, and students in their labs, sheds light on some of these important questions. The study was recently published in the Journal of Biological Chemistry.

“Proteins, much like a bipolar magnet, have two ends — carboxy (-COOH group) and amino (-NH2 group)," said Lederkremer. "In one trial, we tagged the carboxy end (C-terminal tagging) and found that the protein is set in a specific orientation on internal membranes of the cell, where the amino end faces the cytoplasm. In another approach, we tagged the amino end and found equal probability for both possible orientations.”

These findings provide an explanation for current contradictions in the literature regarding the favored orientation, as the tagging itself affects the receptor’s topology — “an act of observation which affects the observed system.” Therefore, said Lederkremer, “we applied other approaches, called protease protection assay and glycosylation mapping, which showed incontrovertibly that S1R assembles so that the amino end faces the cytoplasm. Moreover, using additional approaches we found that the receptor is retained in the ER and hardly exits to the cell surface. This finding explains how the S1R functions in the ER and reduces the pathogenic ER stress”.

Lederkremer said he is optimistic about the new findings: “Having deciphered a crucial mechanism in the receptor's function, we have no doubt that our new findings can affect therapeutic approaches based on S1R, and hopefully alleviate the suffering of neurodegenerative patients, especially those with ALS. In this field every small step is a significant advance.”

This article was reprinted with permission from Tel Aviv University. Read the original.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Tomer Velmer
Tomer Velmer

Tomer Velmer is the spokesperson and head of media relations at Tel Aviv University.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.

CRISPR gene editing: Moving closer to home
News

CRISPR gene editing: Moving closer to home

Nov. 17, 2024

With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.

Finding a missing piece for neurodegenerative disease research
News

Finding a missing piece for neurodegenerative disease research

Nov. 16, 2024

Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.

From the journals: JLR
Journal News

From the journals: JLR

Nov. 15, 2024

Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.