News

New structure gives insight into mRNA export and cancers

And into how viruses hijack the process to infect their host 
Lorena Infante Lara
By Lorena Infante Lara
Dec. 21, 2024

The central dogma of biology defines the flow of genetic information: It describes how proteins are made from mRNA templates, which are in turn made from DNA. Exporting the mRNA from inside the nucleus to the site of protein translation in the cytoplasm is a critical step for life for eukaryotes like us.

Yi Ren’s most recent paper, published in eLife, describes the structure of a protein complex involved in mRNA export that sheds light on the underlying molecular mechanism of mRNA export and the role it plays during infection by herpes viruses. Ren is an assistant professor in the Department of Biochemistry.

“Human cells carry tens of thousands of mRNAs. How does the cellular machinery handle such a diverse population of molecules and transport them from the nucleus where they are synthesized to the cytoplasm for protein translation?” she asked.

Yi Ren
Yi Ren

This is more than just an idle question. Understanding mRNA export is important not just for scientists to understand our cells’ own functioning but is also critical from an infectious disease point of view. mRNA nuclear export is targeted by a variety of viruses to block host gene expression and immune response and/or promote viral gene expression. The Ren lab has previously shown that this is the case for the influenza A virus, the only known type of influenza that can cause flu pandemics, and SARS-CoV-2, the virus that causes COVID-19. Their latest research suggests that herpes viruses might also belong on that list.

The toll of these viral infections worldwide is almost unimaginable. Influenza alone causes about a billion cases worldwide each year. COVID-19 has caused, on average, almost 200 million cases annually since its emergence in 2020. And herpes simplex virus 1, which causes oral herpes and is incurable, affects nearly half of the world’s population.

In the paper, first author Bradley Clarke and coauthors describe key steps in the mRNA nuclear export pathway and explain how the cellular machinery engages with newly synthesized mRNA.

Bradley Clarke
Bradley Clarke

mRNA has two ends, one of which is called the 5’ end (pronounced “five prime”) and which gets “capped” with a specially modified nucleotide before export. Clarke, a postdoctoral fellow and biochemistry alum, used cryo-electron microscopy to determine the structure for the nuclear cap binding complex and a key mRNA export factor, ALYREF.

The connection of CBC and ALYREF was reported almost two decades ago by Robin Reed’s laboratory, but the underlying molecular basis was unknown.

“We couldn’t have done it without the wonderful staff of the Cryo-EM Facility,” Ren said. The Cryo-EM Facility, part of the Center for Structural Biology, aims to make transmission EM accessible to all Vanderbilt researchers.

The new CBC-ALYREF structure revealed molecular insights into the ALYREF-mediated recruitment of mRNA export machinery to the 5’ end of nascent mRNA transcripts. The structure, along with biochemical results, also revealed the precise location of the CBC-ALYREF binding interface. Mutations in CBC at that interface, which the authors suggest could result in dysregulation of mRNA export, have been implicated in several forms of cancers.

The Ren lab also showed that herpes viruses—including KSHV, which causes Kaposi’s sarcoma, and HSV-1, which primarily causes oral herpes—target that interface.

“Our work leads to a testable working hypothesis that herpes viruses may inhibit host mRNA export and thus host gene expression by interfering with the CBC-ALYREF interaction,” Ren said.

Ren’s lab is now working to understand how ALYREF coordinates the different steps in the mRNA nuclear export pathway and whether those steps are evolutionarily conserved.

A detailed mechanistic understanding of the mechanisms of action of ALYREF could pinpoint novel targets for potential anti-viral therapies and could deepen our understanding of the role of mRNA export and mRNA export dysfunctions in cancers.

This article is republished from Vanderbilt University School of Medicine Basic Sciences page. Read the original here.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Lorena Infante Lara
Lorena Infante Lara

Lorena Infante Lara is senior editor and writer in the Office of the Dean of Basic Sciences at Vanderbilt University.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Study sheds light on treatment for rare genetic disorder
News

Study sheds light on treatment for rare genetic disorder

Feb. 2, 2025

Aaron Hoskins’ lab partnered with a drug company to understand how RNA-targeting drugs work on spinal muscular atrophy, a disorder resulting from errors in production of a protein related to muscle movement.

Examining mechanisms of protein complex at a basic cell biological level
News

Examining mechanisms of protein complex at a basic cell biological level

Feb. 1, 2025

Mary Munson is co-corresponding author on a study revealing functions and mechanisms of the exocyst that are essential to how molecules move across a membrane through vesicles in a cell.

Breaking through limits in kinase inhibition
Webinar

Breaking through limits in kinase inhibition

Jan. 31, 2025

Paul Shapiro, the first speaker on ASBMB Breakthroughs, a new webinar series highlighting research from ASBMB journals, discussed taking ideas and discoveries from basic science research toward clinical applications.

How opposing metabolic pathways regulate inflammation
Journal News

How opposing metabolic pathways regulate inflammation

Jan. 28, 2025

Researchers use cybernetics to understand what happens when two acids produced by macrophages compete for binding sites on the enzyme that converts them to active products.

We are all mosaics
News

We are all mosaics

Jan. 25, 2025

Your body is a collection of cells carrying thousands of genetic mistakes accrued over a lifetime — many harmless, some bad, and at least a few that may be good for you.

From the journals: MCP
Journal News

From the journals: MCP

Jan. 24, 2025

Finding biomarkers for preeclampsia. Early diagnostic biomarkers of pancreatic cancer. Better tools to identify tumor-specific peptides. Read about these recent MCP papers.