Journal News

Analyzing triglycerides in Americans of African ancestry

Ecem Arpaci
By Ecem Arpaci
Dec. 19, 2024

When genetic and environmental factors combine to cause high levels of fats, known as triglycerides, in the bloodstream, this is called hypertriglyceridemia. Researchers predict the condition impacts over 25% of all American adults, but most attempts to determine its genetic contributors have focused on patients of European ancestry, leaving research gaps for patients of other ethnicities.

High triglyceride levels increase the risk of cardiovascular and other diseases, including pancreatitis. Addressing underrepresentation among other racial and ethnic groups is essential to addressing inequities and improving diagnostics and health care.

An arteriole with restricted blood flow is one possible result of high triglyceride levels.
An arteriole with restricted blood flow is one possible result of high triglyceride levels.

A team of researchers in the medicine department at the Vanderbilt University Medical Center sought to address this knowledge gap by determining genetic risk factors for high triglyceride levels in American patients of African ancestry. Using the National Institutes of Health’s All Of Us database, they identified a cohort of patients based on ancestry, age and medical history, and grouped them based on hypertriglyceridemia severity.

The researchers searched for variants in genes involved in triglyceride metabolism and compared their occurrence in each of the groups. They used bioinformatics tools to predict which of these variants are likely to be functional, changing the protein product of the gene.

The team’s analyses confirmed that Americans of African ancestry with high triglyceride levels are more likely to carry certain genetic risk factors compared to those with normal levels. These factors include functional variants in regions encoding lipoprotein lipase, an essential enzyme in triglyceride breakdown, and apolipoprotein A5, a primary regulator of triglycerides in the blood, as well as other genetic factors.

According to QiPing Feng, an associate professor of medicine at Vanderbilt and corresponding author of the study, these findings, published recently in the Journal of Lipid Research, reinforce a genetic basis for hypertriglyceridemia.

“This will enable us both to identify patients at risk and to treat patients with high triglyceride levels to prevent cardiovascular disease,” Feng said.

The results are a crucial advance in hypertriglyceridemia research, but genetics do not seem to give the full picture.

“Even though we have screened several different categories of potential genetic factors, we still have around half of patients with high triglycerides for which we cannot identify any genetic factor,” Feng said.

This may be due to environmental factors such as stress.

The All Of Us depository includes genetic data, medical records and extensive questionnaires completed by patients. Feng’s team plans to use this data to research the contribution of environmental factors moving forward.

“We really appreciate both the program,” Feng said, “and the participants in All Of Us that agreed to donate their data for this kind of analysis.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Ecem Arpaci
Ecem Arpaci

Ecem Arpaci is a biochemistry student at Imperial College London and a research intern at Radboud University Medical Center. She is an ASBMB Today volunteer contributor.

Related articles

From the journals: JLR
Nivedita Uday Hegdekar
Meet Robert Helsley
Christopher Radka
From the journals: JLR
Jeyashree Alagarsamy
From the journals: JLR
Swarnali Roy

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

E-cigarettes drive irreversible lung damage via free radicals
Journal News

E-cigarettes drive irreversible lung damage via free radicals

April 17, 2025

E-cigarettes are often thought to be safer because they lack many of the carcinogens found in tobacco cigarettes. However, scientists recently found that exposure to e-cigarette vapor can cause severe, irreversible lung damage.

Using DNA barcodes to capture local biodiversity
ASBMB Annual Meeting

Using DNA barcodes to capture local biodiversity

April 15, 2025

Undergraduate at the University of California, Santa Barbara, leads citizen science initiative to engage the public in DNA barcoding to catalog local biodiversity, fostering community involvement in science.

Targeting Toxoplasma parasites and their protein accomplices
Journal News

Targeting Toxoplasma parasites and their protein accomplices

April 11, 2025

Researchers identify that a Toxoplasma gondii enzyme drives parasite's survival. Read more about this recent study from the Journal of Lipid Research.

Scavenger protein receptor aids the transport of lipoproteins
Journal News

Scavenger protein receptor aids the transport of lipoproteins

April 11, 2025

Scientists elucidated how two major splice variants of scavenger receptors affect cellular localization in endothelial cells. Read more about this recent study from the Journal of Lipid Research.

Fat cells are a culprit in osteoporosis
Journal News

Fat cells are a culprit in osteoporosis

April 11, 2025

Scientists reveal that lipid transfer from bone marrow adipocytes to osteoblasts impairs bone formation by downregulating osteogenic proteins and inducing ferroptosis. Read more about this recent study from the Journal of Lipid Research.

Unraveling oncogenesis: What makes cancer tick?
ASBMB Annual Meeting

Unraveling oncogenesis: What makes cancer tick?

April 7, 2025

Learn about the ASBMB 2025 symposium on oncogenic hubs: chromatin regulatory and transcriptional complexes in cancer.