Journal News

JLR: A close-up of the lipids in Niemann–Pick disease

Laurel Oldach
Dec. 1, 2018

Researchers at the University of Illinois at Chicago have used mass spectrometry imaging to map lipid accumulation in Niemann–Pick disease with unprecedented detail. Their results were published in a recent issue of the Journal of Lipid Research.

There are three major forms of Niemann–Pick disease. All are genetic and rare. Type C, or NPC, results in accumulation of cholesterol and complex lipids known as gangliosides in the endosomes and lysosomes of cells. This accumulation leads to neurodegeneration, killing patients when they are young. Many die before they’re 10. It’s rare for one to live to 40.

Cerebellum imageThis image of a cerebellum from a mouse with Niemann–Pick C was generated using fluorescence immunolabeling, which is an effective technique for determining protein distribution but cannot capture the location of gangliosides and other lipids that accumulate and cause the disease.Williams/NICHD
Based on the way movement and cognition problems emerge in NPC, it seems that different brain regions degenerate at varying stages of the disease. To understand this staging better, it would be useful to visualize lipid accumulation in specific brain regions. This isn’t easy to do with traditional methods, because antibodies against gangliosides are not very specific, so most studies of lipid accumulation in Niemann–Pick disease use homogenized tissue samples from mice with the disease and measure bulk lipids by mass spectrometry.

To achieve greater spatial accuracy, researchers in Stephanie Cologna’s lab used mass spectrometry imaging to look closely at lipids in specific regions of the cerebellum in mice with early-stage NPC. Mass spectrometry imaging, which does not require antibodies or chemical labeling, works by representing small areas of a tissue sample as pixels. The researcher coats a tissue sample in a matrix that helps it to ionize and then collects mass spectra from many tiny areas within that sample.

Each spectrum from one pixel includes information about the abundance of many lipid species. The team used the information about different molecules to make images representing the distribution of lipids across the cerebellum.

Mindful of variations in the intensity of matrix-assisted laser desorption/ionization spectra that can arise from uneven application of the matrix or variability among samples, the team, led by graduate student Fernando Tobias, also devised an algorithm to evaluate the most abundant signals. The algorithm let them filter out noise and compare measurements of wild-type and NPC brain samples more reliably with many replicates.

Once they compared lipid distributions across the cerebellum, the team made the interesting observation that, while two types of ganglioside (GM2 and GM3) are drastically higher in the NPC mouse’s cerebellum, GM1 seems to go up throughout the brain. Also, GM2 elevation is very tightly localized in a part of the cerebellum called lobule X, but it’s not yet clear what that might mean.

The researchers intend to continue using mass spectrometry imaging to get a more granular picture of the disease course.

 

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Related articles

From the journals: JLR
Carmen Morcelle
From the journals: JLR
Swarnali Roy
From the journals: JLR
Meric Ozturk
From the journals: JLR
Laura Elyse McCormick

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Predicting fatty liver disease from a tiny blood sample
Journal News

Predicting fatty liver disease from a tiny blood sample

Dec. 24, 2024

Obesity and being overweight aren't the only factors that contribute to liver disease. New tests can help identify who is at risk or already has the disease, even in people who are lean or have a normal weight.

An ancient animal helps scientists improve modern technology
News

An ancient animal helps scientists improve modern technology

Dec. 22, 2024

The same molecules that help tardigrades survive extreme weather can improve cryo-EM images of cellular structures and proteins, a team led by University of Wisconsin–Madison researcher Ci Ji Lim reports.

New structure gives insight into mRNA export and cancers
News

New structure gives insight into mRNA export and cancers

Dec. 21, 2024

Yi Ren’s lab at Vanderbilt has described the structure of a protein complex that sheds light on the underlying molecular mechanism of mRNA export.

Analyzing triglycerides in Americans of African ancestry
Journal News

Analyzing triglycerides in Americans of African ancestry

Dec. 19, 2024

Using the All of Us database, researchers at Vanderbilt sought a genetic reason why some patients, often underrepresented in research, could have varying levels of fat in the bloodstream.

Of yeasts and men: One-hour proteomes, 10 years apart
Journal News

Of yeasts and men: One-hour proteomes, 10 years apart

Dec. 17, 2024

To profile the human genome within an hour, the researchers used a new mass spectrometer and packed their liquid chromatography columns with very high pressure.

Cells have more mini ‘organs’ than researchers thought
News

Cells have more mini ‘organs’ than researchers thought

Dec. 15, 2024

Membraneless organelles, also called biomolecular condensates, are changing how scientists think about protein chemistry, various diseases and even the origin of life.