Annual Meeting

Cells beat stress — so can you!

A 2022 annual meeting session on organelles
Jeffrey I.  Brodsky Elizabeth Vierling
By Jeffrey I. Brodsky and Elizabeth Vierling
Sept. 28, 2021

Organisms can’t avoid stress, so it is not surprising that numerous cellular mechanisms have evolved to temper any toxic effects of stress. Stress responses are triggered within every cellular compartment to activate downstream signaling pathways. Distinct stress responses can lead to production of protective molecular chaperones, alter post-translational modifications and protein trafficking, activate pathways that degrade macromolecules, and change cellular and organellar function and architecture. Together, these responses maintain organelle and cellular homeostasis and, more specifically, protein homeostasis, also known as proteostasis. 

Studies in model systems have uncovered the circuits that control these varied responses, the components that mediate cellular protection, and how disruption or changes in the efficacy of these responses can be linked to specific diseases. Speakers will describe, at the molecular level, how cellular and organelle homeostasis is maintained under normal conditions and when cells and organisms encounter stress. 

Keywords: protein quality control, organelles, stress responses, heat shock proteins, endoplasmic reticulum–associated degradation, autophagy, unfolded protein response 

Who should attend: everyone interested in the diverse mechanisms by which cells cope with stress related to environmental or disease insults, including how different cellular compartments signal stress or respond to restore cellular homeostasis

Theme song: “Under pressure” by David Bowie and Queen

This session is powered by stressed-out cells and organelles.

 

Talks

  • The degradation of misfolded proteins in the ER — Jeffrey Brodsky, University of Pittsburgh
  • Post-translational control of HMG CoA reductase, the rate-limiting enzyme of cholesterol synthesis— Russell DeBose–Boyd, University of Texas Southwest Medical Center
  • Signaling principles, signal decoding and integration revealed by stress — Diego Acosta-Alver, University of California, Santa Barbara
  • The role of rhomboid pseudoproteases in ERADicating misfolded membrane substrates — Sonya Neal, University of California, San Diego
  • Mechanisms of membrane protein sorting — Sichen (Susan) Shao, Harvard Medical School
  • Peroxisomal quality control in Arabidopsis — Bonnie Bartel, Rice University
  • Mitochondrial-derived compartments protect cells from nutrient stress — Adam Hughes, University of Utah
  • Regulation of mitochondrial genome synthesis in animal cells — Samantha Lewis, University of California, Berkeley
  • Mechanisms of stress granule regulation by ribosome-associated quality control factors — Stephanie Moon, University of Michigan
  • Control of translation by ubiquitin during oxidative stress — Gustavo Silva, Duke University
  • Proteins directing lipid fluxes at the ER–lipid droplet continuum — Elina Ikonen, University of Helsinki
  • The interconnected dynamics of ribonucleoprotein condensates and the endoplasmic reticulum — Jason Lee, Baylor College of Medicine

Learn more

Check out all ten thematic symposia planned for the 2022 ASBMB annual meeting:

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Jeffrey I.  Brodsky
Jeffrey I. Brodsky

Jeffrey Brodsky is a professor and the director of the Center for Protein Conformational Diseases at the University of Pittsburgh, where his laboratory studies how endoplasmic reticulum homeostasis is maintained and, in turn, disrupted in various disease states.
 

Elizabeth Vierling
Elizabeth Vierling

Elizabeth Vierling is a distinguished professor of biochemistry and molecular biology at the University of Massachusetts Amherst who focuses on proteins that mitigate stress in plants, including molecular chaperones, mediators of nitric oxide homeostasis and mitochondrial proteins that alter stress responses.
 

Featured jobs

from the ASBMB career center

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Using DNA barcodes to capture local biodiversity
ASBMB Annual Meeting

Using DNA barcodes to capture local biodiversity

April 15, 2025

Undergraduate at the University of California, Santa Barbara, leads citizen science initiative to engage the public in DNA barcoding to catalog local biodiversity, fostering community involvement in science.

Targeting Toxoplasma parasites and their protein accomplices
Journal News

Targeting Toxoplasma parasites and their protein accomplices

April 11, 2025

Researchers identify that a Toxoplasma gondii enzyme drives parasite's survival. Read more about this recent study from the Journal of Lipid Research.

Scavenger protein receptor aids the transport of lipoproteins
Journal News

Scavenger protein receptor aids the transport of lipoproteins

April 11, 2025

Scientists elucidated how two major splice variants of scavenger receptors affect cellular localization in endothelial cells. Read more about this recent study from the Journal of Lipid Research.

Fat cells are a culprit in osteoporosis
Journal News

Fat cells are a culprit in osteoporosis

April 11, 2025

Scientists reveal that lipid transfer from bone marrow adipocytes to osteoblasts impairs bone formation by downregulating osteogenic proteins and inducing ferroptosis. Read more about this recent study from the Journal of Lipid Research.

Unraveling oncogenesis: What makes cancer tick?
ASBMB Annual Meeting

Unraveling oncogenesis: What makes cancer tick?

April 7, 2025

Learn about the ASBMB 2025 symposium on oncogenic hubs: chromatin regulatory and transcriptional complexes in cancer.

Exploring lipid metabolism: A journey through time and innovation
ASBMB Annual Meeting

Exploring lipid metabolism: A journey through time and innovation

April 4, 2025

Recent lipid metabolism research has unveiled critical insights into lipid–protein interactions, offering potential therapeutic targets for metabolic and neurodegenerative diseases. Check out the latest in lipid science at the ASBMB annual meeting.