Processing and translating RNA in health and disease
The field of RNA biology has yielded some of the most widely popularized scientific findings in the last two decades. Not only are many researchers using siRNAs and CRISPR on a daily basis, but we wonder how we ever could have not known about their existence. Yet, these are only the tip of the iceberg of exciting RNA-dependent regulation in biology that will be addressed in depth in this session.
Tracing the life of an RNA, including how it is transcribed, processed and spliced in the nucleus in association with chromatin is one focus. A second topic will be around translation into protein, with a particular focus on the underlying molecular mechanisms, ribosome specialization and gene-specific effects. Finally, several talks will discuss how these RNA regulatory mechanisms are dysregulated in neurodegenerative diseases and cancer.
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30. See the categories.
These studies, presented by leading experts in RNA biology, will provide not just a global overview of an increasingly important field, with enormous potential for future discoveries, but also explain why RNA is considered one of the most promising drug targets and platforms. If you want to be ready for the next CRISPR, you will attend this session.
Keywords: Ribosomes, translation, RNA processing, RNA and disease, splicing, chromatin, CRISPR and immunity.
Who should attend: Students and postdocs who want to hear about one of the most rapidly expanding fields in biology, educators who want to make sure what they are teaching is current and curious people who want to know what all the hype is about. And, of course, RNA junkies who can’t get enough.
Theme song: “Friend Like Me” from “Aladdin,” because RNA can do it all.
This session is powered by ATP and other ribonucleotides.
RNA biology
RNA biogenesis and processing
Chair: Olga Anczukow
Tracy L. Johnson, University of California, Los Angeles
Hiten D. Madhani, University of California, San Francisco
Jeremy E. Wilusz, Baylor College of Medicine
Joshua T. Mendell, University of Texas Southwestern Medical Center
Ribosomes and translation
Chair: Katrin Karbstein
Shu-ou Shan, California Institute of Technology
Ruben L. Gonzalez, Columbia University
Homa Ghalei, Emory University
Amy S.Y. Lee, Dana–Farber Cancer Institute; Harvard Medical School
RNA and disease
Chair: Jeremy E. Wilusz
Blake Wiedenheft, Montana State University
Shuying Sun, Johns Hopkins University
Olga Anczukow, Jackson Laboratory for Genomic Medicine
Katrin Karbstein, UF Scripps Institute for Biomedical Innovation & Technology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Adults grow new brain cells
How does the rare birth of these new neurons contribute to cognitive function?
From the journals: JBC
Histone demethylase inhibited by own sequence. MicroRNA reduces cell cycle–related apoptosis. Multipurpose antibiotic takes on staph infections. Read about recent JBC papers on these topics.
Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity
Pathogens have distinct electrical charges, shapes and sizes. Measuring how quickly they move through an electric field can help researchers separate different species in a sample.
Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment
This recent study by a team from Bill Sullivan’s lab at the Indiana University School of Medicine was named a Journal of Biological Chemistry Editor’s Pick.
Of genes, chromosomes and oratorios
Jenny Graves has spent her life mapping genes and comparing genomes. Now she’s created a musical opus about evolution of life on this planet — bringing the same drive and experimentalism she brought to the study of marsupial chromosomes.
Ubiquitination by TRIM13: An ingredient contributing to diet-induced atherosclerosis
Researchers help unravel the molecular mechanism behind plaque formation in cardiovascular disease.