Lobsters hold the secret of a long, cancer-free life in their genes
The American lobster — easily recognizable by its two hefty claws — can reach the impressive age of 100 years. The remarkable longevity is accompanied by very few signs of aging; it continuously grows and reproduces throughout its life and does not suffer from age-related diseases such as cancer. This exceptional resilience has garnered interest from researchers that are curious to decipher the reasons behind the lobster’s longevity and good health.

Could the genome of the American lobster provide clues about their healthy aging? Researchers at the Gloucester Marine Genomics Institute have recently published the first draft of the American lobster genome, which revealed surprising, first insights into the animal’s unique resilience mechanisms. Their work was published in the journal Science Advances.
The researchers found genes encoding for a novel class of proteins that combine both neuronal and immune-related functions. By coupling the neural and immune system, the lobster could fight off pathogens more efficiently.
The researchers also surveyed the lobster genome for genes involved in safeguarding the genome. These safeguards prevent genomic alterations and mutations, which is crucial for longevity and warding off cancer. The researchers found that the American lobster has an extended repertoire of genes encoding for proteins that silence certain regions of the genome. These regions need to be silenced to prevent potentially disease-causing mutations such as chromosomal rearrangements. By ensuring that these regions remain silenced, the American lobster safeguards its genome throughout its long life.
With the newly deciphered lobster genome as a starting point, future research will provide further insight into the healthy aging strategies of the American lobster. More than a mere delicacy, the humble lobster could teach us a lot about healthy aging.
This story originally appeared on Massive Science, an editorial partner site that publishes science stories by scientists. Subscribe to their newsletter to get even more science sent straight to you.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Lipid biomarkers hold clues to stroke recovery
Scientists at the University of Arizona found that a lipid mediator accumulates with the waves of inflammation associated with stroke and foamy macrophages.

From the JBC archives: Madness, indoles and mercury-based cathartics
A 1907 paper sought to resolve an ongoing question of whether indole, a bacterial molecule in the gut, could cause insanity if overproduced.

From the journals: JBC
Linking modified cysteines to cell migration. Recognizing protein tags for degradation. Disrupting C. difficile toxin production. Read about recent JBC papers on these topics.

Becoming a scientific honey bee
At the World Science Forum, a speaker’s call for scientists to go out and “make honey” felt like the answer to a question Katy Brewer had been considering for a long time.

Mutant RNA exosome protein linked to neurodevelopmental defects
Researchers at Emory University find that a missense mutation impairs RNA exosome assembly and translation and causes neurological disease.

Study sheds light on treatment for rare genetic disorder
Aaron Hoskins’ lab partnered with a drug company to understand how RNA-targeting drugs work on spinal muscular atrophy, a disorder resulting from errors in production of a protein related to muscle movement.