JLR: Finding the structure of a lipid that keeps our tears clear
Because humans evolved from the sea, we carry a little of it with us to stay alive. Salt water makes up the cytoplasm in our cells, the plasma in our blood and the tears in our eyes.
This image by first author Sarah Hancock shows an iris surrounded by the lipid she and colleagues in the Blanksby and Mitchell labs characterized by mass spectronomy.Journal of Lipid Research
But water alone isn’t enough to keep the eye from drying out. A microscopically thin film of oils known as the lipid layer protects the tear film from evaporating. In the August issue of the Journal of Lipid Research, a group of Australian researchers reports the structure of a key long-chain lipid in this layer. Their finding may be used to improve treatments for dry eye.
Although the long-chain lipids in question make up just 5 percent of the tear-film lipid layer, they play an important role in vision. Without them, earlier studies showed, the lipid layer would resemble an oil slick atop a puddle.
“This clearly wouldn’t be satisfactory for you to look through,” said Stephen Blanksby, a professor at the Queensland University of Technology who led the research team in this study.
Blanksby saw the earlier research in Langmuir troughs carried out by others as a prompt to determine the precise structure of the ultra-long-chain lipids of the eye.
The tear-film lipid layer comes from meibum secreted by the lower eyelid. Scientists can collect meibum samples from brave volunteers by running a small spatula gently over their lower lids, but it is difficult to obtain enough for conventional assays like nuclear magnetic resonance spectroscopy.
Complicating matters, the team needed to differentiate between isomers. They knew the long lipids were made of two fatty acids but not whether they were joined end-to-end or branched, a question conventional mass spectrometry couldn’t answer.
Fortunately, Blanksby and colleague Todd Mitchell of the University of Wollongong have spent the last decade fine-tuning mass spectrometric techniques to characterize lipids.
“We were able to bring a unique toolbox to bear,” said Blanksby. “Some of these techniques may not exist outside Todd’s and my laboratory.”
By incorporating established approaches, such as ozonolysis, into a mass spectrometry workflow, the team determined that the most abundant of the ultra-long lipids is joined end-to-end, and they pinpointed each of its double bonds. The mass spectrometrists handed off the structure to chemist colleagues led by Michael Kelso, who developed a method to synthesize it.
The team now is working with industry partner Allergan, which cofunded the research with the Australian Research Council, on incorporating the new synthetic long-chain lipid as a component of drops for dry eye. While our knowledge of the lipid layer has expanded, according to Blanksby many eye drops still use mineral oil.
“This type of work provides a framework to produce a product that mimics, and is based on, the actual components that are present in human tears,” he said.
Blanksby hopes that by creating a better match to the real tear film, blurriness and other side effects of using eye drops can be alleviated.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Guiding grocery carts to shape healthy habits
Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.
Quantifying how proteins in microbe and host interact
“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.
Leading the charge for gender equity
Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.
CRISPR gene editing: Moving closer to home
With the first medical therapy approved, there’s a lot going on in the genome editing field, including the discovery of CRISPR-like DNA-snippers called Fanzors in an odd menagerie of eukaryotic critters.
Finding a missing piece for neurodegenerative disease research
Ursula Jakob and a team at the University of Michigan have found that the molecule polyphosphate could be what scientists call the “mystery density” inside fibrils associated with Alzheimer’s, Parkinson’s and related conditions.
From the journals: JLR
Enzymes as a therapeutic target for liver disease. Role of AMPK in chronic liver disease Zebrafish as a model for retinal dysfunction. Read about the recent JLR papers on these topics.