Journal News

Discovery could lead to more potent garlic, boosting flavor and bad breath

Max Esterhuizen
By Max Esterhuizen
Aug. 16, 2020

For centuries, people around the world have used garlic as a spice, natural remedy, and pest deterrent – but they didn’t know how powerful or pungent the heads of garlic were until they tasted them.

But what if farmers were able to grow garlic and know exactly how potent it would be? What if buyers could pick their garlic based on its might?

A team of Virginia Tech researchers recently discovered a new step in the metabolic process that produces the enzyme allicin, which leads to garlic’s delectable flavor and aroma, a finding that upends decades of previous scientific belief. Their work could boost the malodorous - yet delicious - characteristics that garlic-lovers the world over savor.

“This information changes the whole story about how garlic could be improved or we could make the compounds responsible of its unique flavor,” said Hannah Valentino, a College of Agriculture and Life Sciences Ph.D. candidate. “This could lead to a new strain of garlic that would produce more flavor.”

The discovery of this pathway opens the door for better control of production and more consistent crops, which would help farmers. Garlic could be sold as strong or weak, depending on consumer preferences.

The research was recently published in the Journal of Biological Chemistry.

When Valentino, an Institute for Critical Technology and Applied Science doctoral fellow, and her team set out to test the generally accepted biological process that creates allicin, they found it just didn’t happen.

That’s when the team of researchers set out to discover what was really happening in garlic.

As they peeled back the layers, they realized there was no fuel to power the previous accepted biological process that creates allicin.

“By using rational design, Hannah found a potential substrate,” said Pablo Sobrado, professor of biochemistry in the College of Agriculture and Life Sciences and a member of the research team. “This is significant because by finding the metabolic pathway and understanding how the enzyme actually works and its structure gives us a blueprint of how allicin is created during biosynthesis.”

Valentino and the team – which included undergraduate students – worked in the Sobrado Lab in the Fralin Life Sciences Institute directly with the substrates that comprise garlic, doing their work solely in vitro.

Valentino-Sobrado-890x593.jpg
Hannah Valentino, left, and Pablo Sobrado, right, are conducting research that is laying the foundation for a future in which buyers can choose garlic based on its strength and flavor profile.

The researchers found that allicin, the component that gives garlic its smell and flavor, was produced by an entirely different biosynthetic process. Allyl-mercaptan reacts with flavin-containing monooxygenase, which then becomes allyl-sulfenic acid.

Importantly, the allicin levels can be tested, allowing farmers to know the strength of their crops without the need for genetic engineering. Greater flavor can simply be predicted, meaning powerful garlic could simply be bred or engineered.

“We have a basic understanding of the biosynthesis of allicin that it is involved in flavor and smell, but we also now understand an enzyme that we can try to modulate, or a modify, to increase or decrease the level of the flavor molecules based on these biological processes,” Sobrado said.   

Because of their work, the future awaits for fields of garlic harsh enough to keep even the most terrifying vampires at bay.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Max Esterhuizen
Max Esterhuizen

Max Esterhuizen is a communications and marketing specialist who has spent his career in higher education and in sports journalism. As the assistant director for communications and marketing for the College of Agriculture and Life Sciences at Virginia Tech, Max tells and shares stories inside the college, AREC, and Virginia Cooperative Extension. He also helps lead the Office of Communications and Marketing in a digital-first strategy that aligns with the college’s advancement priorities and helps promote the research and academics of the college as well as the impact of Virginia Cooperative Extension and Virginia Agricultural Experiment Station. While in the college, Max has served as the editor of the college’s flagship publication, which has won national awards and landed media placements in outlets ranging from NPR’s Science Friday to Rolling Stone.

Related articles

From the journals: MCP
Ankita Arora
'CoA as the central core'
Marissa Locke Rottinghaus
There and back again
Laurel Oldach
Making O
John Arnst
At the interface
Lina M. Obeid & Michael J. Pulkoski-Gross

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The quest to treat and cure xerostomia
Interview

The quest to treat and cure xerostomia

July 23, 2024

Blake Warner, chief of the Salivary Disorders Unit at the NIH talks about his lab’s efforts to develop treatments for dry mouth.

There's more to blue cheese than just the stench
News

There's more to blue cheese than just the stench

July 21, 2024

Virginia Tech researchers discovered a way to synthesize a compound in the mold of blue cheese that has antibacterial and anticancer properties.

Engineering cells to broadcast their behavior can help scientists study their inner workings
News

Engineering cells to broadcast their behavior can help scientists study their inner workings

July 20, 2024

Researchers can use waves to transmit signals from the invisible processes and dynamics underlying how cells make decisions.

From the journals: JBC
Journal News

From the journals: JBC

July 19, 2024

Lung cancer cells resist ferroptosis. ORMDL3 in ulcerative colitis. Novel genetic variants in thyroid cancer. Read about these recent papers.

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.