Starved to death: Can dietary methionine combat cancer?
The organic compounds that come together to form proteins are called amino acids. The human body uses amino acids as sources of energy for functions such as homeostasis, growth, and repair. While the body can produce some amino acids (known as nonessential), others are strictly obtained through food (known as essential).
The essential amino acid methionine, or Met, is critical for genetic regulation, protein production, cell metabolism and DNA repair. Unlike noncancerous cells, most cancer cells cannot recycle Met efficiently; instead, cancer cells rely on a continuous supply of methionine from external sources for growth. This vulnerability is known as Met dependence, or Met stress sensitivity.
Researchers do not know much yet about the mechanisms behind Met dependence in cancer; however, a recent study published in the Journal of Lipid Research has brought us closer to understanding the role of Met dependence in cancer cell lipid metabolism. Peter Kaiser of the University of California, Irvine, and collaborators at the University of California, Davis, Metabolomics Center and University of Texas MD Anderson Cancer Center used Met-dependent and Met-independent breast cancer cell lines to characterize the lipid changes that occur in response to Met-dependent stress.
In the cell, diverse lipids make up the cellular membrane and aid in signaling and transport; lipids are also important for nutrient and energy storage. While lipid metabolism is studied widely in relationship to heart disease, researchers know little about lipid metabolism in cancer.
“In cancers, specifically in breast cancer, there has always been a connection to lipid metabolism,” Kaiser said. “We are very interested in understanding how these changes in lipids can affect cancer cells and how they can translate into feasible drug targets.”
Kaiser and colleagues fed cancer cells Met-deficient media to induce stress and then used high-performance liquid chromatography, genetic analysis, and cell microscopy to characterize the changes that occurred in lipids. The researchers found that lipid remodeling and abundance are affected directly by Met-deprivation stress in cancer cells.
Compared to the Met-independent cells (which do not require externally provided Met), the researchers saw an accumulation of lipid droplets, a decrease in lipid synthesis, and a global decrease in all lipid types (except triglycerides; these underwent remodeling), in the Met-dependent cancer cells (which require a continuous external supply of Met). These changes suggest Met stress may affect the endoplasmic reticulum, or ER, an organelle in the cell responsible for many metabolic processes, including lipid synthesis.
“A lot of proteins are folded in the ER,” Kaiser said. “This can lead to a stress response because protein folding becomes impacted in the ER as a consequence of the changes occurring to the lipids.”
These findings support a previous study in which reduced dietary Met helped shrink tumors in rats when used in conjunction with radiation or chemotherapeutics.
Kaiser and his colleagues seek to understand the molecular mechanisms involved in cancer Met dependence. His lab is also interested in the relationship between Met dependence and cell cycle regulation. These studies could increase knowledge of the unique metabolic needs of cancer cells and lead to better therapies.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Chemistry meets biology to thwart parasites
Margaret Phillips will receive the Alice and C. C. Wang Award in Molecular Parasitology at the ASBMB Annual Meeting, March 7-10 in Washington, D.C.

ASBMB announces 2026 JBC/Tabor awardees
The seven awardees are first authors of outstanding papers published in 2025 in the Journal of Biological Chemistry.

Missing lipid shrinks heart and lowers exercise capacity
Researchers uncovered the essential role of PLAAT1 in maintaining heart cardiolipin, mitochondrial function and energy metabolism, linking this enzyme to exercise capacity and potential cardiovascular disease pathways.

Decoding how bacteria flip host’s molecular switches
Kim Orth will receive the Earl and Thressa Stadtman Distinguished Scientists Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Defining JNKs: Targets for drug discovery
Roger Davis will receive the Bert and Natalie Vallee Award in Biomedical Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Building better tools to decipher the lipidome
Chemical engineer–turned–biophysicist Matthew Mitsche uses curiosity, coding and creativity to tackle lipid biology, uncovering PNPLA3’s role in fatty liver disease and advancing mass spectrometry tools for studying complex lipid systems.