Lipid News

Tour de flippase

Todd R. Graham
By Todd R. Graham
July 20, 2021

The lipid flippase business is booming. Researchers are discovering new members of this protein family and reporting new structures for old members.

The term “flippase” was coined to describe any protein that catalyzes the flip-flop movement of phospholipid between the two leaflets of a membrane. However, we now recognize three functionally distinct categories of lipid transporters: flippases, floppases and scramblases.

Flippase is used to describe inward-directed pumps that transport lipid unidirectionally from the extracellular leaflet to the cytosolic leaflet, while floppase describes outward-directed pumps that transport lipid in the opposite direction. Most flippases and floppases are adenosine triphosphate–powered pumps in the P4-ATPase and ATP-binding cassette, or ABC, transporter families, respectively. Energy-independent transporters that allow bidirectional transport of lipid are called scramblases, and these are members of several evolutionarily distinct protein families.

Flippases have a primary role in establishing and maintaining membrane asymmetry in eukaryotic cells by enriching phosphatidylserine, or PS, and phosphatidylethanolamine to the cytosolic leaflet of the plasma membrane and removing these lipids from the extracellular leaflet.

The structural basis for lipid substrate recognition by P4-ATPases started to emerge over the past two years from cryo-electron microscopy structures of P4-ATPases with PS bound in an entry site where substrate initially loads. However, recent cryo-EM structures of fungal Dnf1–Lem3 reveal substrate also bound to an exit site that surprisingly sits 10 angstroms above the cytosolic leaflet. It will be interesting to determine if this cytosolically exposed exit site is conserved in other P4-ATPases.

Lipid-newsFlippase-890x286.jpg
Courtesy of Todd R. Graham
A few examples of flippase, floppase and scramblase structures. Dnf1 is dark red, and lipids bound to Dnf1–Lem3 and MsbA are in yellow.

Floppases function in the formation of asymmetric membranes as well as the export of lipids from the cell. MsbA from E. coliis an example of an ABC transporter that flops lipopolysaccharide substrate across the inner membrane. Cryo-EM studies have provided insight into how lipopolysaccharide enters MsbA from the cytosolic leaflet, but how this bulky substrate manages to flop as it moves across the membrane remains unclear.

Two types of scramblases break plasma membrane lipid asymmetry and expose signaling lipids such as PS on the extracellular leaflet. The anoctamin/TMEM16 family of scramblases are activated by a Ca++ influx and expose PS on blood cell membranes to stimulate clotting. Another type of scramblase, Xkr8, primarily acts during apoptosis and is activated by caspase cleavage. This results in PS exposure, which is important for recognition of the cell corpses by phagocytic cells. The Xkr8 structure recently has been reported in a preprint, and it will be fascinating to see how the scrambling mechanism compares between TMEM16F and Xkr8.

Several new scramblases have been discovered with links to autophagy. ATG9, TMEM41B and VMP1, proteins implicated in the growth of autophagosomes, recently were shown to be scramblases. ATG9 localizes to the autophagosome, while VMP1 and TMEM41B proteins are endoplasmic reticulum residents. These scramblases are connected by a lipid transfer protein called ATG2 that mediates movement of phospholipid from the ER to the autophagosome. VMP1 and TMEM41B presumably allow for balanced extraction of lipid from both leaflets of the ER, while ATG9 would allow newly delivered lipid to flow into both leaflets of the autophagosome.

Flippase research is in a bull market right now, and the torrid pace at which new components and mechanistic insights are emerging bodes well for the future of this field.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Todd R. Graham
Todd R. Graham

Todd R. Graham is a professor in the biological sciences department at Vanderbilt University. His lab studies membrane biogenesis and protein trafficking with an emphasis on the function of P4-ATPases.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Finding a symphony among complex molecules
Profile

Finding a symphony among complex molecules

April 23, 2025

MOSAIC scholar Stanna Dorn uses total synthesis to recreate rare bacterial natural products with potential therapeutic applications.

E-cigarettes drive irreversible lung damage via free radicals
Journal News

E-cigarettes drive irreversible lung damage via free radicals

April 17, 2025

E-cigarettes are often thought to be safer because they lack many of the carcinogens found in tobacco cigarettes. However, scientists recently found that exposure to e-cigarette vapor can cause severe, irreversible lung damage.

Using DNA barcodes to capture local biodiversity
ASBMB Annual Meeting

Using DNA barcodes to capture local biodiversity

April 15, 2025

Undergraduate at the University of California, Santa Barbara, leads citizen science initiative to engage the public in DNA barcoding to catalog local biodiversity, fostering community involvement in science.

Targeting Toxoplasma parasites and their protein accomplices
Journal News

Targeting Toxoplasma parasites and their protein accomplices

April 11, 2025

Researchers identify that a Toxoplasma gondii enzyme drives parasite's survival. Read more about this recent study from the Journal of Lipid Research.

Scavenger protein receptor aids the transport of lipoproteins
Journal News

Scavenger protein receptor aids the transport of lipoproteins

April 11, 2025

Scientists elucidated how two major splice variants of scavenger receptors affect cellular localization in endothelial cells. Read more about this recent study from the Journal of Lipid Research.

Fat cells are a culprit in osteoporosis
Journal News

Fat cells are a culprit in osteoporosis

April 11, 2025

Scientists reveal that lipid transfer from bone marrow adipocytes to osteoblasts impairs bone formation by downregulating osteogenic proteins and inducing ferroptosis. Read more about this recent study from the Journal of Lipid Research.