News

Revealing what makes bacteria life-threatening

University of Queensland staff
By University of Queensland staff
June 2, 2024

Queensland researchers have discovered that a mutation allows some E. coli bacteria to cause severe disease in people while other bacteria are harmless, a finding that could help to combat antibiotic resistance.

Professor Mark Schembri and Dr Nhu Nguyen from IMB and Associate Professor Sumaira Hasnain from Mater Research found the mutation in the cellulose making machinery of E. coli bacteria. The research was published in Nature Communications.

Professor Schembri said the mutation gives the affected E. coli bacteria the green light to spread further into the body and infect more organs, such as the liver, spleen and brain.

"Bad' bacteria can't make cellulose

“Our discovery explains why some E. coli bacteria can cause life-threatening sepsis, neonatal meningitis and urinary tract infections (UTIs), while other E. coli bacteria can live in our bodies without causing harm,” Professor Schembri said.

“The ‘good’ bacteria make cellulose and ‘bad’ bacteria can’t.”

Bacteria produce many substances on their cell surfaces that can stimulate or dampen the immune system of the host.

Plants, algae and 'good' bacteria make the carbohydrate cellulose, 'bad' bacteria can't.

Inflammation and spreading through the body

“The mutations we identified stopped the E. coli making the cell-surface carbohydrate cellulose and this led to increased inflammation in the intestinal tract of the host,” Professor Schembri said.

“The result was a breakdown of the intestinal barrier, so the bacteria could spread through the body.”

In models that replicate human disease, the team showed that the inability to produce cellulose made the bacteria more virulent, so it caused more severe disease, including infection of the brain in meningitis and the bladder in UTIs.

Finding new ways to prevent infection

E. coli is the most dominant pathogen associated with bacterial antibiotic resistance.
E. coli is the most dominant pathogen associated with bacterial antibiotic resistance.
 

Associate Professor Hasnain said understanding how bacteria spread from intestinal reservoirs to the rest of the body was important in preventing infections.

“Our finding helps explain why certain types of E. coli become more dangerous and provides an explanation for the emergence of different types of highly virulent and invasive bacteria,” she said.

Professor Schembri said E. coli was the most dominant pathogen associated with bacterial antibiotic resistance.

“In 2019 alone, almost 5 million deaths worldwide were associated with bacterial antibiotic resistance, with E. coli causing more than 800,000 of these deaths,” he said.

“As the threat of superbugs that are resistant to all available antibiotics increases worldwide, finding new ways to prevent this infection pathway is critical to reduce the number of human infections.”

This article was republished from the University of Queensland website. Read the original here.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
University of Queensland staff
University of Queensland staff

This article was written by a member or members of the University of Queensland communications staff.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Raw milk is risky, but airborne transmission of H5N1 from cow’s milk is inefficient in mammals
News

Raw milk is risky, but airborne transmission of H5N1 from cow’s milk is inefficient in mammals

Aug. 31, 2024

Findings suggest that cow’s milk infected with bird flu poses a real risk to humans, but the virus may not spread very far or quickly to others.

From the Journals: MCP
Journal News

From the Journals: MCP

Aug. 30, 2024

A deep learning approach to phosphoproteomics. Untangling complex proteomics mass spec data. Read about these recent papers.

Cholesterol synthesis and cancer
Journal News

Cholesterol synthesis and cancer

Aug. 27, 2024

Researchers find that the active form of a key cholesterol synthesis enzyme is upregulated in endometrial cancer tissues.

This protein does “The Twist”
News

This protein does “The Twist”

Aug. 25, 2024

The NMDAR is involved in numerous cognitive functions including memory, and its movements are tightly coordinated like a choreographed dance routine.

The phageome: A hidden kingdom within your gut
News

The phageome: A hidden kingdom within your gut

Aug. 24, 2024

Human innards are teeming with viruses that infect bacteria. What are they up to?

From the journals: JLR
Journal of Lipid Research

From the journals: JLR

Aug. 23, 2024

Muscle lipids and metabolic syndrome. A new method for detecting peroxisomal disorders. Testing oligonucleotide therapy in NASH. Read about recent papers on these topics