News

Scientists use bacteria to help plants grow in salty soil

Method could be scaled up to help farmers improve crop yield in areas with increased soil salinity
Nancy D. Lamontagne
May 1, 2020

A new study has shown that salt-tolerant bacteria can be used to enhance salt tolerance in various types of plants. The new approach could increase crop yield in areas dealing with increasing soil salinity.

Each year, about 2 million to 3 million hectares of irrigated farmland go out of production worldwide due to salinity problems, according to the U.S. Agency for International Development. Increased soil salinity not only reduces water uptake for crops but can often create a nutrient imbalance that decreases plant growth and yield.

Although salt levels in soil can increase naturally over time, especially in arid areas, farming practices also contribute. Irrigation water, especially recycled wastewater, contains salts that concentrate in the soil. Fertilizers also add salts to the soil.

KBG-Plants-890x592.jpg
Brent L. Nielsen/Brigham Young University
Kentucky bluegrass grown in salty soil and inoculated with a bacillus strain (right) showed 5.5 times the growth in fresh weight compared to uninoculated control in salt (left) and 8.4  times in dry weight compared to the control (middle) .

“Agricultural soil loss continues to rise, posing a very real threat to many important crops,” said research team leader Brent Nielsen, a professor at Brigham Young University. “Our method for enhancing the salt tolerance of plants could be scaled up to allow farmers to use more of their land and improve yield. This would create a more stable income for farmers and a more reliable food supply for consumers.”

Ashley Miller, a graduate student working in Nielsen’s lab, was scheduled to present this research at the American Society for Biochemistry and Molecular Biology annual meeting in San Diego in April. Though the meeting, to be held in conjunction with the 2020 Experimental Biology conference, was canceled in response to the COVID-19 outbreak, the research team's abstract was published in The FASEB Journal.

KBG-Roots-890x559.jpg
Brent L. Nielsen/Brigham Young University
Harvested Kentucky bluegrass plants with adherent soil on roots (left image) and with soil washed away (right image). In each panel are uninoculated plants grown in absence of salt (left), plants inoculated with strain B2 and grown in presence of salt (middle) and uninoculated plants grown in presence of salt (right).

In previous work, the researchers isolated salt-tolerant bacteria from plants growing in salty soils. They then immersed young alfalfa seedlings in liquid containing the individual salt-tolerant bacterial strains, a process called inoculation. The alfalfa inoculated with some of these salt-tolerant strains exhibited improved growth in high-salt conditions compared to plants not inoculated with bacteria. In the new work, they explored whether this salt tolerance could be transferred to other plants.

“We’ve found that salt tolerance can be transferred to many plant types,” said Miller. “Initial studies with Kentucky bluegrass have been particularly successful.”

The researchers found that Kentucky bluegrass grown in salty soil after inoculation with a Bacillus strain increased yield 8.4 times in dry weight compared with control plants grown in the same soil without the bacterial inoculation. The researchers continue to test whether salt tolerance can be conferred to additional plant varieties, with promising initial results.  They are also working to understand how the bacteria confer salt tolerance.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Nancy D. Lamontagne

Nancy D. Lamontagne is a science writer and editor at Creative Science Writing based in Chapel Hill, North Carolina.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Beneficial gut microbe has surprising metabolic capabilities
News

Beneficial gut microbe has surprising metabolic capabilities

Nov. 23, 2024

WashU researchers’ mouse study of therapeutic food for malnourished children shows a new gut bacterial enzyme's wide-ranging functions.

Transforming learning through innovation and collaboration
Award

Transforming learning through innovation and collaboration

Nov. 22, 2024

Neena Grover will receive the William C. Rose Award for Exemplary Contributions to Education at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

From the journals: JBC
Journal News

From the journals: JBC

Nov. 22, 2024

Prefoldins participate in parasite pathology. Protein modifications coordinate in DNA repair. Nucleotide analog blocks viral RNA polymerases. Read about recent papers in the JBC on these topics.

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.