Journal News

JBC: Bacterial drug synergies hide in plain sight

Metagenomics may speed discovery of future therapeutic combinations
Laurel Oldach
May 1, 2019
Rapa NuiRapamycin is named for Rapa Nui, or Easter Island, where the bacteria that produce it were initially isolated. HULEROY0/PIXABAY

While on the hunt for a molecule with therapeutic potential, Peter Mrak and his colleagues made a more sweeping discovery: Every known isolate of bacteria that produces the immunosuppressive drug rapamycin also can make a second compound that enhances rapamycin’s effect.

“Put into simple words, this feels like finding an ancient treasure map in your grandfather’s attic,” Mrak said.

Rapamycin was isolated in the 1970s from bacteria found on Easter Island. The molecule gives those bacteria a competitive edge by suppressing the growth of fungi in the soil. At first, researchers took a cue from nature and tried using rapamycin to treat fungal infections. Then they found that it also suppresses growth and metabolism in human cells, notably those of the immune system. The drug is now used to prevent transplant rejection and stop tissues from growing into coronary stents.

Mrak and an international team at the Swiss pharmaceutical company Novartis recently sought other beneficial compounds from the same bacteria. Mining for natural products with pharmaceutical potential in bacteria from diverse environments is a standard approach with high success rates. But in this case, the researchers found more than a single molecule.

In culture media that had been used to grow a rapamycin-producing strain of Streptomyces, the scientists found a group of secondary products called actinoplanic acids. This family of molecules had been isolated from other microbes in the late 1990s, but no one had worked out how they are synthesized. Mrak and colleagues noticed that actinoplanic acids contain a chemical group called a tricarballylate that would be very difficult for a synthetic chemist to produce in the lab and wondered whether they could exploit bacterial means of synthesizing that chemical group.

The researchers used a bioinformatics tool called antiSMASH to comb through the Streptomyces genome, hunting for possible enzymes involved in actinoplanic acid production. After finding a few candidates, they showed by targeted mutagenesis that a cluster of closely spaced genes on the Steptomyces genome can function as a sort of biochemical assembly line to generate actinoplanic acids, including making the tricky tricarballylate.

When Mrak and colleagues looked for other bacteria that might carry this gene cluster, they noticed something surprising. Every one of the fully sequenced bacterial isolates known to make rapamycin also carried the genes to make actinoplanic acid. This suggested that microbes might benefit from having both molecules.

When the researchers tested actinoplanic acid and rapamycin as fungal growth inhibitors, they found that the two molecules’ combined effect was greater than you’d expect from simple addition. In other words, the molecules work synergistically. The research appears in the Journal of Biological Chemistry.

Doctors have found by trial and error that the effect of rapamycin in patients is amplified when the drug is combined with molecules that, like actinoplanic acid, inhibit an enzyme called farnesyltransferase. That combination of drugs is in clinical tests for cancer now. The authors say their approach could be used to find other co-occurring groups of biosynthetic genes more rapidly.

“We could potentially shorten the path toward new therapies by learning from examples which have evolved in nature over millions of years,” Mrak said. “Considering that some (natural products) show their best only in combination with another molecule, there may be a number of new medicinal compounds hiding among the natural products already discovered.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

From the Journals: JBC
Journal News

From the Journals: JBC

March 25, 2025

How cells recover from stress. Cancer cells need cysteine to proliferate. Method to make small membrane proteins. Read about papers on these topics recently published in the Journal of Biological Chemistry.

ASBMB names 2025 JBC/Tabor Award winners
Award

ASBMB names 2025 JBC/Tabor Award winners

March 24, 2025

The six awardees are first authors of outstanding papers published in 2024 in the Journal of Biological Chemistry.

Pan-kinase inhibitor for head and neck cancer enters clinical trials
Journal News

Pan-kinase inhibitor for head and neck cancer enters clinical trials

March 18, 2025

A drug targeting the scaffolding function of multiple related kinases halts tumor progression.

Sweet secrets of sperm glycosylation
Journal News

Sweet secrets of sperm glycosylation

March 12, 2025

Scientists from Utrecht University uncover similar glycosylation patterns in sperm from bulls, boars and humans, distinct from those found in blood across species. These findings may improve IVF and farming techniques.

From the Journals: JLR
Journal News

From the Journals: JLR

March 11, 2025

Promising therapeutic candidate for steatosis. Unique lipid profiles in glycogen storage disease. Microglial lactic acid mediates neuroinflammation. Read about these recent papers.

Meet Robert Helsley
Interview

Meet Robert Helsley

March 6, 2025

The Journal of Lipid Research junior associate editor studies chronic liver disease and was the first in his family to attend college.