News

Tube worm slime displays long-lasting, self-powered glow

Marine organism’s bioluminescence could inspire new eco-friendly, long-lasting light sources
Nancy D. Lamontagne
April 28, 2020

When threatened, the marine parchment tube worm secretes a sticky slime that emits a unique long-lasting blue light. New research into how the worm creates and sustains this light suggests that the process is self-powered.

“The light, or bioluminescence, produced by this worm does not appear as flashes, like in most luminous organisms, but as a long-lasting glow,” said Evelien De Meulenaere, a researcher in Dimitri Deheyn’s lab at the Scripps Institution of Oceanography. “Understanding the mechanisms of this bioluminescence process could inform the design of a light stick that works for several days or, with further optimization, environmentally friendly garden and street lighting.”

De Meulenaere was scheduled to present this research at the American Society for Biochemistry and Molecular Biology annual meeting in San Diego in April. Though the meeting, to be held in conjunction with the 2020 Experimental Biology conference, was canceled in response to the COVID-19 outbreak, the research team's abstract was published in The FASEB Journal.

Tube-worm-890x293.jpg
David Liittschwager
The photograph on the left shows the marine parchment tube worm (Chaetopterus sp.) under natural light. The worm is curled up, tucking its tail under its head. The image on the right shows the same worm but in the dark, capturing the blue light (bioluminescence) coming from the slime/mucus that is continuously produced by the worm when it feels threatened.

After discovering that light production was not linked with any of the organism’s metabolic pathways, the researchers realized that sustaining light production for more than a few milliseconds would require the slime to contain its own energy source.

Further work revealed that the worm’s slime contains an iron storage protein called ferritin. Artificially adding iron to the mucus increased light production, which led the researchers to believe that ferritin acts as like a molecular battery that stores energy. More recently, they found that exposing ferritin to blue light makes more iron available and that exposing the slime to blue light induces bursts of light lasting several minutes.

“A light source based on this mechanism could be remotely triggered using blue light to initiate and amplify the process,” De Meulenaere said. “Once we understand exactly how light production happens in the natural system, that information could potentially be used to develop a long-lasting light that is also biodegradable and rechargeable.”

The tube worm’s bioluminescence could also be used to create biomedical reporter systems. Because it is sensitive to iron such a system could be used to test for iron deficiencies or toxicities. It could also be used as a light-emitting reporter that works for several days. This would allow experiments where various proteins or cells are tracked for much longer periods of time than possible with today’s fluorescent reporters.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Nancy D. Lamontagne

Nancy D. Lamontagne is a science writer and editor at Creative Science Writing based in Chapel Hill, North Carolina.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Beneficial gut microbe has surprising metabolic capabilities
News

Beneficial gut microbe has surprising metabolic capabilities

Nov. 23, 2024

WashU researchers’ mouse study of therapeutic food for malnourished children shows a new gut bacterial enzyme's wide-ranging functions.

Transforming learning through innovation and collaboration
Award

Transforming learning through innovation and collaboration

Nov. 22, 2024

Neena Grover will receive the William C. Rose Award for Exemplary Contributions to Education at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

From the journals: JBC
Journal News

From the journals: JBC

Nov. 22, 2024

Prefoldins participate in parasite pathology. Protein modifications coordinate in DNA repair. Nucleotide analog blocks viral RNA polymerases. Read about recent papers in the JBC on these topics.

Guiding grocery carts to shape healthy habits
Award

Guiding grocery carts to shape healthy habits

Nov. 21, 2024

Robert “Nate” Helsley will receive the Walter A. Shaw Young Investigator in Lipid Research Award at the 2025 ASBMB Annual Meeting, April 12–15 in Chicago.

Quantifying how proteins in microbe and host interact
Journal News

Quantifying how proteins in microbe and host interact

Nov. 20, 2024

“To develop better vaccines, we need new methods and a better understanding of the antibody responses that develop in immune individuals,” author Johan Malmström said.

Leading the charge for gender equity
Award

Leading the charge for gender equity

Nov. 19, 2024

Nicole Woitowich will receive the ASBMB Emerging Leadership Award at the 2025 ASBMB Annual meeting, April 12–15 in Chicago.