Annual Meeting

Saving injera: Lessons from a teff grain's drought-tolerant cousin

Laurel Oldach
April 27, 2021
If you’ve ever sampled Ethiopian cuisine, you’ve probably tasted teff. The cereal grain is the key ingredient of injera, Ethiopian flatbread, and a staple crop in the Horn of Africa. Researchers at Michigan State University are studying a closely related grass that is hardier, hoping to use its tricks to help teff survive severe drought.

Eragrostis nindensis is known as a resurrection plant: Even after a drought that would kill other grasses, and even if it has shriveled to a dead brown husk, it can rebound and sprout new green shoots when water becomes available.
resurrection-plant-story-main-image.jpg
Kiran Shivaiah
Despite drying out completely during a simulated drought, a laboratory specimen of E. nindensis was able to recover and thrive after Kiran Shivaiah re-watered it.
When a lab down the hall began a genomic comparison of teff and E. nindensis, which belong to the same genus, Kiran Shivaiah, a research associate at the MSU Plant Resilience Institute, struck up a collaboration to study the resurrection plant’s physiology. He started by letting his study subject wither and keeping it that way for weeks.

“It was completely desiccated. Dead,” Shivaiah said. “Nobody thought it would come back. But I started watering and within four weeks … it came back to life.”

 Like other researchers in Peter Lundquist’s lab, Shivaiah is interested in how plastoglobules, lipid droplets found in the chloroplast, mediate stress responses. He found that as nindensis stems dry, their plastoglobules increase in size. Nindensis is known to destroy its chlorophyll while drying out, to prevent photo-oxidation. Using lipidomics, Shivaiah observed that crash in chlorophyll level and an increase in smaller lipids and sugars, which he thinks are breakdown products. He suspects that some lipids are converted into sucrose, to stabilize proteins as drier conditions introduce osmotic stress. The adaptation also seems to involve reductions in the level of many plastoglobule proteins.

The findings are preliminary, Shivaiah said. After replicating them to solidify his conclusions about how the plastoglobule changes, he hopes to investigate what differentiates teff plastoglobules from those of E. nindensis.

“Teff is dessication-sensitive. It can tolerate water scarcity for a while, but not as long as E. nindensis,” he said. “Can we do genetic modification to the teff plant to make it as desiccation-tolerant as the nindensis plant?”

You can see Shivaiah's poster presentation here, as part of the Lipids and Membranes poster session, or join a discussion on Tuesday, April 27 at 3:15 p.m. EDT.
 

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Life in four dimensions: When biology outpaces the brain
Profile

Life in four dimensions: When biology outpaces the brain

Jan. 27, 2026

Nobel laureate Eric Betzig will discuss his research on information transfer in biology from proteins to organisms at the 2026 ASBMB Annual Meeting.

Fasting, fat and the molecular switches that keep us alive
Interview

Fasting, fat and the molecular switches that keep us alive

Jan. 27, 2026

Nutritional biochemist and JLR AE Sander Kersten has spent decades uncovering how the body adapts to fasting. His discoveries on lipid metabolism and gene regulation reveal how our ancient survival mechanisms may hold keys to modern metabolic health.

Redefining excellence to drive equity and innovation
Award

Redefining excellence to drive equity and innovation

Jan. 22, 2026

Donita Brady will receive the ASBMB Ruth Kirschstein Award for Maximizing Access in Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Mining microbes for rare earth solutions
Award

Mining microbes for rare earth solutions

Jan. 14, 2026

Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Feature

Fueling healthier aging, connecting metabolism stress and time

Jan. 8, 2026

Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Award

Mapping proteins, one side chain at a time

Jan. 7, 2026

Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.