Journal News

Review delves into proximity proteomics

Laurel Oldach
April 20, 2020

In a recent review article in Molecular & Cellular Proteomics, Payman Samavarchi–Tehrani and colleagues in the Gingras lab at Sinai Health Systems and the University of Toronto offer an introduction to proximity-dependent biotinylation, a key first step in proximity proteomics. The authors give researchers who are new to the field information about the natural history of biotinylation enzymes. They also offer insights into the mechanisms of these enzymes and new perspectives on future proximity proteomics experiments.

Traditional proteomics can provide information about the quantitative contents of a cell or tissue, but it sacrifices much information on the spatial organization of proteins within cells. Since protein activity often depends on location and interactions with other proteins, researchers have developed approaches such as proximity proteomics to obtain information about the environs of a protein of interest. Proximity proteomics methods developed in the past 10 years depend on fusing the protein of interest to an enzyme that will label nearby proteins with a chemical tag that then can be purified. After purification, mass spectrometry identifies the tagged proteins.

Most often, the chemical tag is biotin, a cofactor that is key to carboxylase enzyme activity in several metabolic pathways. Two types of enzyme are used for proximity-dependent biotinylation: peroxidases, used for methods such as APEX, and biotin ligases, used for methods such as BioID.

Proxprotimage-835x195.jpg
Samavarchi–Tehrani et al./MCP
A schematic diagram shows the proximity proteomics workflow. A bait protein is tagged with a biotinylation enzyme (center of concentric circles), which allows for covalent labeling of proteins in its vicinity with a reactive biotin intermediate. Then the researcher lyses the cells and uses streptavidin to extract biotin-tagged proteins, digests those proteins and uses mass spectrometry to determine their identity.

Ordinarily, biotin ligases append biotin to the carboxylases that need it as a cofactor. Biotin ligases found in cells have high specificity for their substrate proteins, but certain mutations reduce that specificity by decreasing the ligase enzyme’s affinity for a reactive intermediate. Such mutants lose their grip on the cofactor and can release a reactive biotin that can bind the next amine group it encounters — often on a nearby protein. When researchers pull down biotin after this reaction occurs, they can determine what proteins were localized in the neighborhood of the biotin ligase and, by extension, the protein it was tethered to.

The second enzyme family, the peroxidases, evolved to convert hydrogen peroxide to water by redox chemistry. In the presence of a biotin–phenol substrate and hydrogen peroxide, they can make a short-lived free radical that reacts with certain amino acid side chains, once again tagging nearby proteins for later identification.

As proximity proteomics has grown in popularity, both types of enzyme have been the targets of extensive engineering and molecular evolution to coax them toward the activity profiles users want. The authors review the available enzymes and discuss experimental design considerations, such as choice of control conditions and how to get rid of what they call “frequent flyer” proteins that often are isolated nonspecifically.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Universal tool for tracking cell-to-cell interactions
News

Universal tool for tracking cell-to-cell interactions

May 19, 2024

A team of researchers has developed LIPSTIC, which can lay the groundwork for a dynamic map tracking physical interactions between different cells — the elusive cellular interactome.

Weedy rice gets competitive boost from its wild neighbors
News

Weedy rice gets competitive boost from its wild neighbors

May 18, 2024

Rice feeds the world. But researchers have found that a look-alike weed has many ways of getting ahead.

From the journals: JLR
Journal News

From the journals: JLR

May 17, 2024

A “T” makes a difference in blood clotting. High cholesterol: two screens are better than one. Biomarkers for cardiovascular risk. Statin-induced changes to the HDL lipidome. Read about recent papers on these topics.

Decoding microglial language
Journal News

Decoding microglial language

May 14, 2024

Emory University scientists characterize extracellular vesicles that facilitate intercellular communication.

What is metabolism?
News

What is metabolism?

May 12, 2024

A biochemist explains how different people convert energy differently – and why that matters for your health.

What’s next in the Ozempic era?
News

What’s next in the Ozempic era?

May 11, 2024

Diabetes, weight loss and now heart health: A new family of drugs is changing the way scientists are thinking about obesity — and more uses are on the horizon.