Journal News

JLR: 'Almost like a Velcro ball'

Proteome study illuminates eclectic nature of high-density lipoprotein
Laurel Oldach
April 1, 2019

Cholesterol carried in high-density lipoprotein, or HDL, particles is called the good cholesterol because people whose levels are high have a lower risk of developing heart disease. That link, established in 1977, has been confirmed over and over.Velcro ball

But in the last 15 years, a string of drug candidates that failed to raise HDL, along with genetic studies that dispute a causal link, have led researchers, including Nathalie Pamir of the Oregon Health and Sciences University, to reexamine why HDL is a good predictor of cardiac mortality.

“Around 2010, the belief was that HDL doesn’t matter with regard to cardiovascular disease risk,” Pamir said. “But now, we understand that there’s more to HDL than HDL cholesterol level. Now, the more we dig, the more exciting biology we discover.”

In the Journal of Lipid Research, Pamir and colleagues report on their work with an underappreciated HDL component: its proteins. In a genetic study of the HDL proteome, the team showed that a mixture of heritable and environmental factors drives variation in protein makeup of HDL particles. The approach may help unpack the lipoproteins’ puzzling relationship to cardiovascular mortality.

Pamir isolated and analyzed the proteome of HDL particles from the Hybrid Mouse Diversity Panel. The panel, developed in the University of California, Los Angeles lab of senior author Jake Lusis, includes both common lab strains and hybrid strains, each inbred to homozygosity. The hybrid strains remix the same core gene pool and offer an unlimited supply of genetically identical mice.

The team measured some clinical features of each healthy chow-fed mouse, such as HDL’s ability to suction cholesterol out of macrophages in the plaques in the blood vessel.

“We interrogated as many traits as we could and treated each protein that gets associated with HDL as a trait,” Pamir said.

In a process known as quantitative trait locus mapping, they correlated each trait they measured to the known genetic landscape of the hundreds of mice to reveal genetic loci that affect each protein or function.

The team found single-nucleotide polymorphisms linked to cholesterol efflux capacity and several linked to the presence or abundance of certain proteins. Correlation between proteins hinted at complex interactions within the HDL proteome.

According to Lusis, this study is “the first time where you can see how genetics … could paint a really useful picture of how the different HDL components interact.”

While some proteins were present in almost every strain, other components varied among strains or even among genetically identical individuals. The team interpreted the latter group as responding to environmental and metabolic changes in each mouse. For Pamir, they confirm a new way of thinking about HDL’s activity.

“It’s almost like a tiny Velcro ball that is rolling on surfaces, infiltrating intercellular space … and sampling from the environments that it’s been in,” she said.

Exposure to microinflammations caused by changes as small as social hierarchy within a cage of mice may change what HDL picks up.

The next step is to see whether the team’s finding generalizes to human HDL, Pamir said. “At the end of the day, a mouse is a mouse is a mouse.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Laurel Oldach

Laurel Oldach is a former science writer for the ASBMB.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.

Animals have used bioluminescence to communicate for millions of years
News

Animals have used bioluminescence to communicate for millions of years

July 13, 2024

Despite its widespread occurrence, scientists don’t yet know when or where this phenomenon first emerged, or its original function.

Getting to the genetic basis of cardiovascular disease
Journal News

Getting to the genetic basis of cardiovascular disease

July 11, 2024

Edwin G. Peña Martínez received a JBC Tabor award for associating the condition with mutations in noncoding sequences.

Microparticles safeguard vitamins and information
News

Microparticles safeguard vitamins and information

July 9, 2024

Scientists aim to use nanotechnology to combat malnutrition and improve medical recordkeeping in impoverished parts of the world.

Why AlphaFold 3 needs to be open source
Essay

Why AlphaFold 3 needs to be open source

July 7, 2024

The powerful AI-driven software from DeepMind was released without making its code openly available to scientists.