There’s more than one way to be good
If you’ve had a blood test to check your cholesterol levels, your doctor probably told you both your so-called good, or high-density lipoprotein, and bad, or low-density lipoprotein, cholesterol levels. HDL is known for helping your body get rid of LDL, and this is great for your cardiovascular system; LDL is a component of atherosclerotic plaques that build up in arteries and lead to heart attacks.
However, researchers have begun to see that story as incomplete. Several groups at Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine working together recently published a study in the Journal of Lipid Research showing one way that HDL does much more than remove LDL.
Claire Chougnet is the lead author on the study “It has become clearer and clearer to the field that HDL is acting through other mechanisms,” she said, “particularly through immune modulating capacity.”
That the immune system influences cholesterol and health isn’t news. In fact, macrophages taking up LDL is one of the first steps down the path to developing atherosclerotic plaques in the arteries.
Macrophages are part of the innate immune system, however, and Chougnet and her group were interested in the other arm, the adaptive immune system, which has a less clear role in metabolic disease.
Laura Atehortua is the first author on the paper. “It is well known that innate immune cells recognize HDL,” she said, “so we wondered what is going to happen with adaptive immune response.”
Using human samples from blood banks, which requires meticulously repeating the experiments many times to account for the inherent variability in the samples, the researchers found that HDL can prevent cell death in T regulatory cells, or Tregs, a type of CD4+ T lymphocytes that are responsible for resolving inflammation.
Atehortua explained the role of Tregs. “They’re very important for immune system,” she said. “They’re the ones that say ‘oh it's enough.’”
Researchers have shown that the number of Tregs, which is regulated by the balance between Treg proliferation and Treg death, influences the overall level of inflammation in the body, which in turn influences atherosclerosis, metabolic diseases and other conditions including autoimmune diseases.
Once they found that HDL prevented Treg death, but not that of other CD4+ T lymphocytes, the researchers wanted to figure out what exactly in the HDL was having this effect, and they expected lipids to be the key. However, using reconstituted HDL particles lacking various components, they found that it wasn’t the lipid, but the proteins in the HDL particles that acted on Tregs to prevent their death.
“This was not at all what we expected,” Chougnet said. “The first surprise was that it was not the lipid but the protein, and the second surprise was that in the protein, it was a relatively minor protein not the major protein.”
The researchers found the prosurvival effect was mediated by apolipoprotein E, a protein found less abundantly on HDL than the more common apolipoprotein A.
This work may help scientists design better treatments for cardiovascular and metabolic diseases, as it highlights a potential point of intervention to reduce systemic inflammation.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Liver enzyme holds key to adjusting to high-protein diets
Researchers at the University of Geneva show that glutamate dehydrogenase controls blood alkalinity during fasting.
Adults grow new brain cells
How does the rare birth of these new neurons contribute to cognitive function?
From the journals: JBC
Histone demethylase inhibited by own sequence. MicroRNA reduces cell cycle–related apoptosis. Multipurpose antibiotic takes on staph infections. Read about recent JBC papers on these topics.
Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity
Pathogens have distinct electrical charges, shapes and sizes. Measuring how quickly they move through an electric field can help researchers separate different species in a sample.
Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment
This recent study by a team from Bill Sullivan’s lab at the Indiana University School of Medicine was named a Journal of Biological Chemistry Editor’s Pick.
Of genes, chromosomes and oratorios
Jenny Graves has spent her life mapping genes and comparing genomes. Now she’s created a musical opus about evolution of life on this planet — bringing the same drive and experimentalism she brought to the study of marsupial chromosomes.