Journal News

A downside to liposome drug delivery?

Ken Hallenbeck
March 7, 2023

Precisely targeting a drug to the right part of the body is always hard, but drug delivery is at its most challenging when the therapeutic is genetic material.

Unlike other classes of biologic drugs, DNA and RNA are not stable in circulation, so scientists have used lipid capsules called liposomes to envelop the therapeutic genes and shuttle them safely to the appropriate destination.

The human body treats engineered liposomes — and all drugs — like foreign objects. Upon injection, the immune system reacts to the circulating lipid capsules, and the white blood cells known as macrophages begin engulfing and clearing the perceived intruders.

In this immunofluorescence image of a mouse bone section seven days after tail-vein injection, the liposomes (red) are distributed throughout the bone marrow cells (blue) and are associated preferentially with the vasculature (green).
Journal of Lipid Research
In this immunofluorescence image of a mouse bone section seven days after tail-vein injection, the liposomes (red) are distributed throughout the bone marrow cells (blue) and are associated preferentially with the vasculature (green).

For many years, this phenomenon was not a problem, according to Yue Li, a researcher at Xuzhou Medical University in Jiangsu, China.

“In recent decades, countless nanoparticles have been designed for drug delivery, and there are over 20 liposomal products available on the market,” Li said.

These medicines have been shown to be safe and effective by regulatory agencies such as the United States Food and Drug Administration.

However, in a study published in the Journal of Lipid Research, Li, along with co–first author Ran Yao and colleagues, showed that liposomes can have a negative impact on bone marrow macrophages.

These scientists knew that as macrophages encounter and engulf liposomes, they begin to accumulate lipid droplets. Researchers had put this to clever use delivering fluorescent labels into immune cells during lab experiments, but Li realized that the same phenomenon might be occurring when liposomes are administered as drugs. Indeed, previous work had shown it occurs in the liver.

To test the theory, Li and a team of researchers at the Xuzhou Medical University injected mice with liposomes and then collected macrophages from the mouse bone marrow for study. The result is stunning: Macrophages in the bone marrow underwent pro-inflammatory activation and showed signs of stress, such as lipid accumulation in the endoplasmic reticulum. This led to a decreased ability to create red blood cells and important immune cell types like monocytes.

What does this mean? Li said he thinks the finding “provides a novel consideration criteria for clinical drug trials.” That is, patients who are immunocompromised or who have bone marrow infections might need to avoid liposome drug trials.

While this may be true, the finding must be replicated in human macrophages and tissue samples before researchers can be sure. The work also should be extended beyond liposomes to other classes of lipid nanoparticles.

It’s not all bad news for liposomal drugs, either. For years, researchers have worked to engineer the surface of nanoparticles to escape immune detection. The original motivation was to increase effectiveness by keeping the drug in circulation longer. Now, those modifications may have a secondary benefit: sparing the hardworking bone marrow macrophages.

This is the graphical abstract for the paper titled "Liposomes trigger bone marrow niche macrophage 'foam' cell formation and affect hematopoiesis in mice."

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition weekly.

Learn more
Ken Hallenbeck

Ken Hallenbeck earned a Ph.D. in pharmaceutical sciences from the University of California, San Francisco, and now is an early drug-discovery researcher. He serves on the board of directors of ReImagine Science and is the life sciences lead at TerraPrime.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Liver enzyme holds key to adjusting to high-protein diets
Journal News

Liver enzyme holds key to adjusting to high-protein diets

Jan. 14, 2025

Researchers at the University of Geneva show that glutamate dehydrogenase controls blood alkalinity during fasting.

Adults grow new brain cells
News

Adults grow new brain cells

Jan. 11, 2025

How does the rare birth of these new neurons contribute to cognitive function?

From the journals: JBC
Journal News

From the journals: JBC

Jan. 9, 2025

Histone demethylase inhibited by own sequence. MicroRNA reduces cell cycle–related apoptosis. Multipurpose antibiotic takes on staph infections. Read about recent JBC papers on these topics.

Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity
News

Tiny laboratories that fit in your hand can rapidly identify pathogens using electricity

Jan. 5, 2025

Pathogens have distinct electrical charges, shapes and sizes. Measuring how quickly they move through an electric field can help researchers separate different species in a sample.

Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment
News

Toxoplasma gondii parasite uses unconventional method to make proteins for evasion of drug treatment

Jan. 4, 2025

This recent study by a team from Bill Sullivan’s lab at the Indiana University School of Medicine was named a Journal of Biological Chemistry Editor’s Pick.

Of genes, chromosomes and oratorios
Profile

Of genes, chromosomes and oratorios

Jan. 1, 2025

Jenny Graves has spent her life mapping genes and comparing genomes. Now she’s created a musical opus about evolution of life on this planet — bringing the same drive and experimentalism she brought to the study of marsupial chromosomes.